30 research outputs found

    Response of a Specialist Bat to the Loss of a Critical Resource

    Get PDF
    Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations

    Contrasting Genetic Structure in Two Co-Distributed Species of Old World Fruit Bat

    Get PDF
    The fulvous fruit bat (Rousettus leschenaulti) and the greater short-nosed fruit bat (Cynopterus sphinx) are two abundant and widely co-distributed Old World fruit bats in Southeast and East Asia. The former species forms large colonies in caves while the latter roots in small groups in trees. To test whether these differences in social organization and roosting ecology are associated with contrasting patterns of gene flow, we used mtDNA and nuclear loci to characterize population genetic subdivision and phylogeographic histories in both species sampled from China, Vietnam and India. Our analyses from R. leschenaulti using both types of marker revealed little evidence of genetic structure across the study region. On the other hand, C. sphinx showed significant genetic mtDNA differentiation between the samples from India compared with China and Vietnam, as well as greater structuring of microsatellite genotypes within China. Demographic analyses indicated signatures of past rapid population expansion in both taxa, with more recent demographic growth in C. sphinx. Therefore, the relative genetic homogeneity in R. leschenaulti is unlikely to reflect past events. Instead we suggest that the absence of substructure in R. leschenaulti is a consequence of higher levels of gene flow among colonies, and that greater vagility in this species is an adaptation associated with cave roosting

    Sequence stratigraphic analysis of Eocene Rock Strata, Offshore Indus, southwest Pakistan

    No full text
    In this study, seismic data from two wells (Pak G2-1 and Indus Marine-1C) and age diagnostic larger benthic foraminifera (LBF) within drill cuttings has been used for the first time to identify depositional sequences within the carbonates in the Offshore Indus Basin, Pakistan. The Offshore Indus is tectonically categorized as a passive continental margin where carbonates occur as shelf carbonates in the near offshore and on volcanic seamounts in deeper waters. Seismic data analysis has indicated the presence of minor faults and carbonate buildups above the igneous basement in the south. Patterns of the seismic reflections enabled definition of three seismic facies units identified as: Unit 1 basement, represented by chaotic, moderate amplitude reflection configuration; while parallel bedding and the drape of overlying strata is typical character of Unit 2, carbonate mound facies. The younger Miocene channels represent Unit 3. The diagnosis of Alveolina vredenburgi/cucumiformis biozone confirmed the Ilerdian (55–52 Ma) stage constituting a second order cycle of deposition for the Eocene carbonates (identified as Unit 2). The carbonate succession has been mainly attributed to an early highstand system tract (HST). The environmental conditions remained favorable leading to the development of keep-up carbonates similar to pinnacle buildups as a result of aggradation during late transgressive system tract and an early HST. The carbonate sequence in the south (Pak G2-1) is thicker and fossiliferous representing inner to middle shelf depths based on fauna compared to the Indus Marine-1C in the north, which is devoid of fossils. Three biozones (SBZ 5, SBZ 6 and SBZ 8) were identified based on the occurrence of LBF. The base of the SBZ 5 zone marks the larger foraminifera turnover and the Paleocene–Eocene (P–E) boundary. The LBF encountered in this study coincides with earlier findings for the P–E boundary. Our findings indicate that the entire Ilerdian stage ranges from 55.5 to 52 Ma that was the episode of warmer water conditions on the carbonate shelves leading to the diversification of K-strategist larger foraminifera. The larger foraminiferal assemblage encountered in this study confirms the findings. The possible indication of stratigraphic-combination traps, revealed as reflection terminations, make carbonate mounds in the south a potential exploration target
    corecore