30 research outputs found
Grover search with pairs of trapped ions
The desired interference required for quantum computing may be modified by
the wave function oscillations for the implementation of quantum
algorithms[Phys.Rev.Lett.84(2000)1615]. To diminish such detrimental effect, we
propose a scheme with trapped ion-pairs being qubits and apply the scheme to
the Grover search. It can be found that our scheme can not only carry out a
full Grover search, but also meet the requirement for the scalable hot-ion
quantum computing. Moreover, the ion-pair qubits in our scheme are more robust
against the decoherence and the dissipation caused by the environment than
single-particle qubits proposed before.Comment: RevTe
Pressure sensing fabric
This paper<sup>1</sup> presents an approach for decoding the pressure information exerted over a piece of fabric by means of resistive sensing. The proposed sensor includes a distributed resistive grids constructed by two systems of orthogonally contacted electrical conductive yarns, with no external sensing element to be attached on the fabric. Since the conductive yarns serve as the sensing and wiring elements simultaneously, this design simplifies the fabrication process, reduces the cost and makes the production of large area flexible pressure sensor possible. The location of the pressure applied on the fabric can be identified by detecting the position where the change of the resistances occurs between two embroidered yarns. Meanwhile, the magnitude of the pressure can be acquired by measuring the variations of the resistance. In order to eliminate the "crosstalk" effect between adjoining fibers, the yarns were separately wired on the fabric surface. © 2006 Materials Research Society
Pressure sensing fabric
This paper1 presents an approach for decoding the pressure information exerted over a piece of fabric by means of resistive sensing. The proposed sensor includes a distributed resistive grids constructed by two systems of orthogonally contacted electrical conductive yarns, with no external sensing element to be attached on the fabric. Since the conductive yarns serve as the sensing and wiring elements simultaneously, this design simplifies the fabrication process, reduces the cost and makes the production of large area flexible pressure sensor possible. The location of the pressure applied on the fabric can be identified by detecting the position where the change of the resistances occurs between two embroidered yarns. Meanwhile, the magnitude of the pressure can be acquired by measuring the variations of the resistance. In order to eliminate the "crosstalk" effect between adjoining fibers, the yarns were separately wired on the fabric surface. © 2006 Materials Research Society
