35 research outputs found

    Lattice-switch Monte Carlo

    Full text link
    We present a Monte Carlo method for the direct evaluation of the difference between the free energies of two crystal structures. The method is built on a lattice-switch transformation that maps a configuration of one structure onto a candidate configuration of the other by `switching' one set of lattice vectors for the other, while keeping the displacements with respect to the lattice sites constant. The sampling of the displacement configurations is biased, multicanonically, to favor paths leading to `gateway' arrangements for which the Monte Carlo switch to the candidate configuration will be accepted. The configurations of both structures can then be efficiently sampled in a single process, and the difference between their free energies evaluated from their measured probabilities. We explore and exploit the method in the context of extensive studies of systems of hard spheres. We show that the efficiency of the method is controlled by the extent to which the switch conserves correlated microstructure. We also show how, microscopically, the procedure works: the system finds gateway arrangements which fulfill the sampling bias intelligently. We establish, with high precision, the differences between the free energies of the two close packed structures (fcc and hcp) in both the constant density and the constant pressure ensembles.Comment: 34 pages, 9 figures, RevTeX. To appear in Phys. Rev.

    Velocity Statistics in the Two-Dimensional Granular Turbulence

    Full text link
    We studied the macroscopic statistical properties on the freely evolving quasi-elastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found that remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering and final state. In the shearing stage, the self-organized macroscopic coherent vortices become dominant. In the clustering stage, the energy spectra are close to the expectation of Kraichnan-Batchelor theory and the squared two-particle separation strictly obeys Richardson law.Comment: 4 pages, 4 figures, to be published in PR

    Comment on "Theory and computer simulation for the equation of state of additive hard-disk fluid mixtures"

    Full text link
    A flaw in the comparison between two different theoretical equations of state for a binary mixture of additive hard disks and Monte Carlo results, as recently reported in C. Barrio and J. R. Solana, Phys. Rev. E 63, 011201 (2001), is pointed out. It is found that both proposals, which require the equation of state of the single component system as input, lead to comparable accuracy but the one advocated by us [A. Santos, S. B. Yuste, and M. L\'{o}pez de Haro, Mol. Phys. 96, 1 (1999)] is simpler and complies with the exact limit in which the small disks are point particles.Comment: 4 pages, including 1 figur

    Random close packing of granular matter

    Full text link
    We propose an interpretation of the random close packing of granular materials as a phase transition, and discuss the possibility of experimental verification.Comment: 6 page

    Thixotropy in macroscopic suspensions of spheres

    Get PDF
    An experimental study of the viscosity of a macroscopic suspension, i.e. a suspension for which Brownian motion can be neglected, under steady shear is presented. The suspension is prepared with a high packing fraction and is density-matched in a Newtonian carrier fluid. The viscosity of the suspension depends on the shear rate and the time of shearing. It is shown for the first time that a macroscopic suspension shows thixotropic viscosity, i.e. shear-thinning with a long relaxation time as a unique function of shear. The relaxation times show a systematic decrease with increasing shear rate. These relaxation times are larger when decreasing the shear rates, compared to those observed after increasing the shear. The time scales involved are about 10000 times larger than the viscous time scale and about 1000 times smaller than the thermodynamic time scale. The structure of the suspension at the outer cylinder of a viscometer is monitored with a camera, showing the formation of a hexagonal structure. The temporal decrease of the viscosity under shear coincides with the formation of this hexagonal pattern

    Model for Glass Transition in a Binary fluid from a Mode Coupling approach

    Get PDF
    We consider the Mode Coupling Theory (MCT) of Glass transition for a Binary fluid. The Equations of Nonlinear Fluctuating Hydrodynamics are obtained with a proper choice of the slow variables corresponding to the conservation laws. The resulting model equations are solved in the long time limit to locate the dynamic transition. The transition point from our model is considerably higher than predicted in existing MCT models for binary systems. This is in agreement with what is seen in Computer Simulation of binary fluids. fluids.Comment: 9 Pages, 3 Figure

    First normal stress difference and crystallization in a dense sheared granular fluid

    Full text link
    The first normal stress difference (N1{\mathcal N}_1) and the microstructure in a dense sheared granular fluid of smooth inelastic hard-disks are probed using event-driven simulations. While the anisotropy in the second moment of fluctuation velocity, which is a Burnett-order effect, is known to be the progenitor of normal stress differences in {\it dilute} granular fluids, we show here that the collisional anisotropies are responsible for the normal stress behaviour in the {\it dense} limit. As in the elastic hard-sphere fluids, N1{\mathcal N}_1 remains {\it positive} (if the stress is defined in the {\it compressive} sense) for dilute and moderately dense flows, but becomes {\it negative} above a critical density, depending on the restitution coefficient. This sign-reversal of N1{\mathcal N}_1 occurs due to the {\it microstructural} reorganization of the particles, which can be correlated with a preferred value of the {\it average} collision angle θav=π/4±π/2\theta_{av}=\pi/4 \pm \pi/2 in the direction opposing the shear. We also report on the shear-induced {\it crystal}-formation, signalling the onset of fluid-solid coexistence in dense granular fluids. Different approaches to take into account the normal stress differences are discussed in the framework of the relaxation-type rheological models.Comment: 21 pages, 13 figure

    Characterization factors to assess land use impacts on pollinator abundance in life cycle assessment

    Get PDF
    While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.Industrial EcologyEnvironmental Biolog

    Corresponding states theory for the freezing of ionic liquids

    No full text
    10.1021/ie101653nIndustrial and Engineering Chemistry Research501234-238IECR
    corecore