12 research outputs found

    Efficiency of application of different DNA probes in identifying marker chromosomes

    No full text
    The presence of marker chromosomes in the human karyotype always requires a special diagnostic approach. Determination of the marker chromosome type and structure is of great diagnostic and prognostic importance. There are several methods of marker chromosomes identification, which differ in their informative value. The paper presents the results of cytogenetic and FISH diagnostics of supernumerical marker chromosomes (SMC) cases in patients’ karyotype. Aim. To analyze the results of the cytogenetic and molecular cytogenetic diagnostics for patients with marker chromosomes, and to evaluate and compare the efficiency of the methods used. Methods. Karyotyping was done according to the standard methods. GTG, CBG, QFQ and NOR-Ag methods of differential staining were used. FISH was performed according to the manufacturer’s instructions for CEP, LSI and WCP DNA-probes. Results. Marker chromosome was found in 15 of 7989 patients. Application of standard staining methods was effective in 66.6 % of cases. Combination of differential staining and FISH allowed identifying a marker chromosome in 83.3 %. 90 % of all marker chromosomes were identified as isochromosomes and 60 % of them were derivative from chromosome 15. Conclusions. The use of WCP probes is a main step in the marker chromosome identification with further application of CEP/LSI probes. If a marker chromosome has nonspecific DNA sequences more sensitive methods should be use.ΠΠ°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΈΡ… хромосом Π² ΠΊΠ°Ρ€Ρ–ΠΎΡ‚ΠΈΠΏΡ– людини Π·Π°Π²ΠΆΠ΄ΠΈ Π²ΠΈΠΌΠ°Π³Π°Ρ” особливого діагностичного ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρƒ. ВизначСння Ρ‚ΠΈΠΏΡƒ Ρ– структури ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΎΡ— хромосоми ΠΌΠ°Ρ” Π²Π΅Π»ΠΈΠΊΠ΅ діагностичнС Ρ– прогностичнС значСння. Існує ΠΊΡ–Π»ΡŒΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΈΡ… хромосом, Π°Π»Π΅ Ρ€Ρ–Π·Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ ΠΌΠ°ΡŽΡ‚ΡŒ Ρ€Ρ–Π·Π½ΠΈΠΉ Ρ€Ρ–Π²Π΅Π½ΡŒ інформативності. Π’ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Π½Π°Π²Π΅Π΄Π΅Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ†ΠΈΡ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΎΡ— Ρ‚Π° FISH діагностики Π²ΠΈΠΏΠ°Π΄ΠΊΡ–Π² Ρ–Π· Π½Π°Π΄Ρ‡ΠΈΡΠ΅Π»ΡŒΠ½ΠΈΠΌΠΈ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΈΠΌΠΈ хромосомами Π² ΠΊΠ°Ρ€Ρ–ΠΎΡ‚ΠΈΠΏΡ– ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π². ΠœΠ΅Ρ‚Π°. Аналіз Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² Ρ†ΠΈΡ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… Ρ– молСкулярно-Ρ†ΠΈΡ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ ΠΊΠ°Ρ€Ρ–ΠΎΡ‚ΠΈΠΏΡ–Π² ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π² Π· ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΈΠΌΠΈ хромосомами, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΎΡ†Ρ–Π½ΠΊΠ° Ρ– порівняння СфСктивності використаних ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π². ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. ΠšΠ°Ρ€Ρ–ΠΎΡ‚ΠΈΠΏΡƒΠ²Π°Π½Π½Ρ Π±ΡƒΠ»ΠΎ Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΎ Ρƒ відповідності Π΄ΠΎ стандартних ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π². Π‘ΡƒΠ»ΠΈ використані GTG, CBG, QFQ Ρ– NOR-Ag ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ фарбування. FISH Π±ΡƒΠ»Π° Π²ΠΈΠΊΠΎΠ½Π°Π½Π° Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π΄ΠΎ інструкцій Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΠΊΠ° для CEP, LSI Ρ‚Π° WCP Π”ΠΠš-ΠΏΡ€ΠΎΠ±. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠœΠ°Ρ€ΠΊΠ΅Ρ€Π½Π° хромосома Π±ΡƒΠ»Π° виявлСна Ρƒ 15 Π· 7989 ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π². Застосування стандартних ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² фарбування Π±ΡƒΠ»ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌ Ρƒ 66,6% Π²ΠΈΠΏΠ°Π΄ΠΊΡ–Π². ΠŸΠΎΡ”Π΄Π½Π°Π½Π½Ρ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ фарбування Ρ‚Π° FISH Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΡƒΠ²Π°Ρ‚ΠΈ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ– хромосоми Ρƒ 83,3 %. 90 % всіх ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΈΡ… хромосом Π±ΡƒΠ»ΠΈ Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ– як ізохромосоми Ρ– 60 % Π· Π½ΠΈΡ… Π±ΡƒΠ»ΠΈ ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΠΌΠΈ Π²Ρ–Π΄ хромосоми 15. Висновки. Використання WCP Π”ΠΠš-ΠΏΡ€ΠΎΠ± Ρ” основним Π΅Ρ‚Π°ΠΏΠΎΠΌ Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΈΡ… хромосом Π· наступним застосуванням CEP Ρ‚Π° LSI Π”ΠΠš-ΠΏΡ€ΠΎΠ±. Π―ΠΊΡ‰ΠΎ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Π° хромосома ΠΌΠ°Ρ” нСспСцифічні послідовності Π”ΠΠš, Ρ‚ΠΎ Ρƒ Ρ‚Π°ΠΊΠΈΡ… Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ… ΠΏΠΎΠ²ΠΈΠ½Π½Ρ– Π±ΡƒΡ‚ΠΈ застосовані Π±Ρ–Π»ΡŒΡˆ Ρ‡ΡƒΡ‚Π»ΠΈΠ²Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ.НаличиС ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹Ρ… хромосом Π² ΠΊΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠ΅ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° всСгда Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ особого диагностичСского ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚ΠΈΠΏΠ° ΠΈ структуры ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΎΠΉ хромосомы ΠΈΠΌΠ΅Π΅Ρ‚ большоС диагностичСскоС ΠΈ прогностичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. БущСствуСт нСсколько ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹Ρ… хромосом, Π½ΠΎ Ρ€Π°Π·Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°Π·Π½Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ информативности. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ цитогСнСтичСской ΠΈ FISH диагностики случаСв со свСрхчислСнными ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹ΠΌΠΈ хромосомами Π² ΠΊΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². ЦСль. Анализ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² цитогСнСтичСских ΠΈ молСкулярно-цитогСнСтичСских исслСдований ΠΊΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠΎΠ² ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹ΠΌ хромосомами, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½ΠΊΠ° ΠΈ сравнСниС эффСктивности ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠšΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ согласно стандартных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ GTG, CBG, QFQ ΠΈ NOR-Ag ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ. FISH Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° Π² соотвСтствии с инструкциями производитСля для CEP, LSI ΠΈ WCP Π”ΠΠš-ΠΏΡ€ΠΎΠ±. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠœΠ°Ρ€ΠΊΠ΅Ρ€Π½Π°Ρ хромосома ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Ρƒ 15 ΠΈΠ· 7989 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ стандартных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ Π±Ρ‹Π»ΠΎ эффСктивным Π² 66,6 % случаСв. Π‘ΠΎΡ‡Π΅Ρ‚Π°Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ ΠΈ FISH ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹Π΅ хромосомы Π² 83,3 %. 90 % всСх ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹Ρ… хромосом Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΊΠ°ΠΊ изохромосомы ΠΈ 60 % ΠΈΠ· Π½ΠΈΡ… Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΎΡ‚ хромосомы 15. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ИспользованиС WCP Π”ΠΠš-ΠΏΡ€ΠΎΠ± являСтся основным этапом ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹Ρ… хромосом с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ CEP ΠΈ LSI Π”ΠΠš-ΠΏΡ€ΠΎΠ±. Если маркСрная хромосома ΠΈΠΌΠ΅Π΅Ρ‚ нСспСцифичСскиС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π”ΠΠš, Ρ‚ΠΎ Π² Ρ‚Π°ΠΊΠΈΡ… случаях Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ Π±ΠΎΠ»Π΅Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹

    Ultrarelativistic electron-hole pairing in graphene bilayer

    Full text link
    We consider ground state of electron-hole graphene bilayer composed of two independently doped graphene layers when a condensate of spatially separated electron-hole pairs is formed. In the weak coupling regime the pairing affects only conduction band of electron-doped layer and valence band of hole-doped layer, thus the ground state is similar to ordinary BCS condensate. At strong coupling, an ultrarelativistic character of electron dynamics reveals and the bands which are remote from Fermi surfaces (valence band of electron-doped layer and conduction band of hole-doped layer) are also affected by the pairing. The analysis of instability of unpaired state shows that s-wave pairing with band-diagonal condensate structure, described by two gaps, is preferable. A relative phase of the gaps is fixed, however at weak coupling this fixation diminishes allowing gapped and soliton-like excitations. The coupled self-consistent gap equations for these two gaps are solved at zero temperature in the constant-gap approximation and in the approximation of separable potential. It is shown that, if characteristic width of the pairing region is of the order of magnitude of chemical potential, then the value of the gap in the spectrum is not much different from the BCS estimation. However, if the pairing region is wider, then the gap value can be much larger and depends exponentially on its energy width.Comment: 13 pages with 8 figures; accepted to Eur. Phys. J.

    Multi-wavelength observations of blazar AO 0235+164 in the 2008-2009 flaring state

    Get PDF
    The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to Ξ³-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the Ξ³-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus. Β© 2012. The American Astronomical Society. All rights reserved

    Insights into the high-energy Ξ³-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the Ξ³-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) Ξ³-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 Β± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 Β± 0.14, and the softest one is 2.51 Β± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. Β© 2011. The American Astronomical Society

    Tunneling ionization of deep centers in high-frequency electric fields

    Get PDF
    A theoretical and experimental study of the tunneling ionization of deep impurities in semiconductors has been carried out for high-frequency alternating electric fields. It is shown that tunneling ionization occurs by phonon-assisted tunneling which proceeds at high electric field strengths into direct tunneling without involving phonons. In the quasistatic regime of low frequencies the tunneling probability is independent of frequency. Raising the frequency leads to an enhancement of the tunneling ionization. The transition from the quasistatic limit to frequency-dependent tunneling is determined by the tunneling time which, in the case of impurities interacting with thermal phonons, is controlled by the temperature. In both the quasistatic and high-frequency limits, the application of an external magnetic field perpendicular to the electric field reduces the ionization probability when the cyclotron frequency becomes larger than the reciprocal tunneling time
    corecore