16 research outputs found

    Critical behavior of the planar magnet model in three dimensions

    Full text link
    We use a hybrid Monte Carlo algorithm in which a single-cluster update is combined with the over-relaxation and Metropolis spin re-orientation algorithm. Periodic boundary conditions were applied in all directions. We have calculated the fourth-order cumulant in finite size lattices using the single-histogram re-weighting method. Using finite-size scaling theory, we obtained the critical temperature which is very different from that of the usual XY model. At the critical temperature, we calculated the susceptibility and the magnetization on lattices of size up to 42342^3. Using finite-size scaling theory we accurately determine the critical exponents of the model and find that ν\nu=0.670(7), γ/ν\gamma/\nu=1.9696(37), and β/ν\beta/\nu=0.515(2). Thus, we conclude that the model belongs to the same universality class with the XY model, as expected.Comment: 11 pages, 5 figure

    Momentum transfer using chirped standing wave fields: Bragg scattering

    Full text link
    We consider momentum transfer using frequency-chirped standing wave fields. Novel atom-beam splitter and mirror schemes based on Bragg scattering are presented. It is shown that a predetermined number of photon momenta can be transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure

    High-precision determination of the critical exponents for the lambda-transition of 4He by improved high-temperature expansion

    Full text link
    We determine the critical exponents for the XY universality class in three dimensions, which is expected to describe the λ\lambda-transition in 4{}^4He. They are obtained from the analysis of high-temperature series computed for a two-component λϕ4\lambda\phi^4 model. The parameter λ\lambda is fixed such that the leading corrections to scaling vanish. We obtain ν=0.67166(55)\nu = 0.67166(55), γ=1.3179(11)\gamma = 1.3179(11), α=0.0150(17)\alpha=-0.0150(17). These estimates improve previous theoretical determinations and agree with the more precise experimental results for liquid Helium.Comment: 8 pages, revte

    Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point

    Full text link
    We report the details and revised analysis of an experiment to measure the specific heat of helium with subnanokelvin temperature resolution near the lambda point. The measurements were made at the vapor pressure spanning the region from 22 mK below the superfluid transition to 4 uK above. The experiment was performed in earth orbit to reduce the rounding of the transition caused by gravitationally induced pressure gradients on earth. Specific heat measurements were made deep in the asymptotic region to within 2 nK of the transition. No evidence of rounding was found to this resolution. The optimum value of the critical exponent describing the specific heat singularity was found to be a = -0.0127+ - 0.0003. This is bracketed by two recent estimates based on renormalization group techniques, but is slightly outside the range of the error of the most recent result. The ratio of the coefficients of the leading order singularity on the two sides of the transition is A+/A- =1.053+ - 0.002, which agrees well with a recent estimate. By combining the specific heat and superfluid density exponents a test of the Josephson scaling relation can be made. Excellent agreement is found based on high precision measurements of the superfluid density made elsewhere. These results represent the most precise tests of theoretical predictions for critical phenomena to date.Comment: 27 Pages, 20 Figure

    Turbulence of Second Sound Waves in Superfluid 4He: Effect of Low-Frequency Resonant Perturbations.

    Get PDF
    We report the results of investigations of acoustic turbulence in a system of nonlinear second sound waves in a high-quality resonator filled with superfluid 4He. It was observed that subharmonics of a periodic driving force applied to the system may be generated via a parametric instability. We find that application of an additional low-frequency pumping to the turbulent system results in the generation of waves at combination frequencies of the driving forces and also leads to substantial changes in the energy spectrum of the acoustic oscillations
    corecore