11 research outputs found

    Implication of mammalian ribosomal protein S3 in the processing of DNA damage

    No full text
    A human apurinic/apyrimidinic endonuclease activity, called AP endonuclease I, is missing from or altered specifically in cells cultured from Xeroderma pigmentosum group-D individuals (XP-D cells) (Kuhnlein, U., Lee, B., Penhoet, E. E., and Linn, S. (1978) Nucleic Acids Res. 5,951-960). We have now observed that another nuclease activity, UV endonuclease III, is similarly not detected in XP-D cells and is inseparable from the AP endonuclease I activity. This activity preferentially cleaves the phosphodiester backbone of heavily ultraviolet-irradiated DNA at unknown lesions as well as at one of the phosphodiester bonds within a cyclobutane pyrimidine dimer. The nuclease activities have been purified from mouse cells to yield a peptide of M(r) = 32,000, whose sequence indicates identity with ribosomal protein S3. The nuclease activities all cross-react with immunopurified antibody directed against authentic rat ribosomal protein S3, and, upon expression in Escherichia coli of a cloned rat cDNA for ribosomal protein S3, each of the activities was recovered and was indistinguishable from those of the mammalian UV endonuclease III. Moreover, the protein expressed in E. coli and its activities cross-react with the rat protein antibody. Ribosomal protein S3 contains a potential nuclear localization signal, and the protein isolated as a nuclease also has a glycosylation pattern consistent with a nuclear localization as determined by lectin binding. The unexpected role of a ribosomal protein in DNA damage processing and the unexplained inability to detect the nuclease activities in extracts from XP-D cells are discussed

    Effect of point mutations on Herbaspirillum seropedicae NifA activity

    No full text
    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain

    Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense

    No full text
    Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription

    Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense

    No full text
    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate

    A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry

    No full text
    The conventional method for quantification of polyhydroxyalkanoates based on whole-cell methanolysis and gas chromatography (GC) is laborious and time-consuming. In this work, a method based on flow cytometry of Nile red stained bacterial cells was established to quantify poly-3-hydroxybutyrate (PHB) production by the diazotrophic and plant-associated bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. The method consists of three steps: i) cell permeabilization, ii) Nile red staining, and iii) analysis by flow cytometry. The method was optimized step-by-step and can be carried out in less than 5 min. The final results indicated a high correlation coefficient (R2=0.99) compared to a standard method based on methanolysis and GC. This method was successfully applied to the quantification of PHB in epiphytic bacteria isolated from rice roots
    corecore