17 research outputs found
Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets
International audienceCoacervate micro-droplets produced by liquid-liquid phase separation have been used as synthetic protocells that mimic the dynamical organization of membrane-free organelles in living systems. Achieving spatiotemporal control over droplet condensation and disassembly remains challenging. Herein, we describe the formation and photo-switchable behaviour of light-responsive coacervate droplets prepared from mixtures of double-stranded DNA and an azobenzene cation. The droplets disassemble and reassemble under UV and blue light, respectively, due to azobenzene trans/cis photo-isomerisation. Sequestration and release of captured oligonucleotides follows the dynamics of phase separation such that light-activated transfer, mixing, hybridization and trafficking of the oligonucleotides can be controlled in binary populations of the droplets. Our results open perspectives for the spatiotemporal control of DNA coacervates and provide a step towards the dynamic regulation of synthetic protocells
Gene-Mediated Chemical Communication in Synthetic Protocell Communities
A gene-directed chemical communication pathway between synthetic protocell signaling transmitters (lipid vesicles) and receivers (proteinosomes) was designed, built and tested using a bottom-up modular approach comprising small molecule transcriptional control, cell-free gene expression, porin-directed efflux, substrate signaling, and enzyme cascade-mediated processing
The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity
Abstract The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which we call REAMP for recombinantly expressed artificial membrane protein, is a single chain of 133 residues arranged into four antiparallel membrane-spanning α-helices. REAMP was overexpressed in Escherichia coli and localized to the cytoplasmic membrane with the intended transmembrane topology. Recombinant REAMP could be extracted from the cell membrane in detergent micelles and was robust and stable in vitro, containing helical secondary structure consistent with the original design. Engineered mono- and bis-histidine residues in the membrane domain of REAMP were able to coordinate heme in vitro, in a manner reminiscent of natural b-type cytochromes. This binding shifted the electrochemical potential of the cofactor, producing a synthetic hemoprotein capable of nascent redox catalysis. These results show that a highly reduced set of amino acids is sufficient to mimic some key properties of natural proteins, and that cellular biosynthesis is a viable route for the production of minimal de novo membrane sequences
