8 research outputs found

    Proximity ligation assay reveals both pre- A nd postsynaptic localization of the APP-processing enzymes ADAM10 and BACE1 in rat and human adult brain

    Get PDF
    Background: Synaptic degeneration and accumulation of amyloid \u3b2-peptides (A\u3b2) are hallmarks of the Alzheimer diseased brain. A\u3b2 is synaptotoxic and produced by sequential cleavage of the amyloid precursor protein (APP) by the \u3b2-secretase BACE1 and by \u3b3-secretase. If APP is instead cleaved by the \u3b1-secretase ADAM10, A\u3b2 will not be generated. Although BACE1 is considered to be a presynaptic protein and ADAM10 has been reported to mainly localize to the postsynaptic density, we have previously shown that both ADAM10 and BACE1 are highly enriched in synaptic vesicles of rat brain and mouse primary hippocampal neurons. Results: Here, using brightfield proximity ligation assay, we expanded our previous result in primary neurons and investigated the in situ synaptic localization of ADAM10 and BACE1 in rat and human adult brain using both pre- A nd postsynaptic markers. We found that ADAM10 and BACE1 were in close proximity with both the presynaptic marker synaptophysin and the postsynaptic marker PSD-95. The substrate APP was also detected both pre- A nd postsynaptically. Subcellular fractionation confirmed that ADAM10 and BACE1 are enriched to a similar degree in synaptic vesicles and as well as in the postsynaptic density. Conclusions: We show that the \u3b1-secretase ADAM10 and the \u3b2-secretase BACE1 are located in both the pre- A nd postsynaptic compartments in intact brain sections. These findings increase our understanding of the regulation of APP processing, thereby facilitating development of more specific treatment strategies

    Insights into the changes in the proteome of Alzheimer disease elucidated by a meta-analysis

    No full text
    Mass spectrometry (MS)-based proteomics is a powerful tool to explore pathogenic changes of a disease in an unbiased manner and has been used extensively in Alzheimer disease (AD) research. Here, by performing a meta-analysis of high-quality proteomic studies, we address which pathological changes are observed consistently and therefore most likely are of great importance for AD pathogenesis. We retrieved datasets, comprising a total of 21,588 distinct proteins identified across 857 postmortem human samples, from ten studies using labeled or label-free MS approaches. Our meta-analysis findings showed significant alterations of 757 and 1,195 proteins in AD in the labeled and label-free datasets, respectively. Only 33 proteins, some of which were associated with synaptic signaling, had the same directional change across the individual studies. However, despite alterations in individual proteins being different between the labeled and the label-free datasets, several pathways related to synaptic signaling, oxidative phosphorylation, immune response and extracellular matrix were commonly dysregulated in AD. These pathways represent robust changes in the human AD brain and warrant further investigation

    Mitigating Alzheimer’s Disease with Natural Polyphenols: A Review

    No full text

    Physico-chemical methods for studying amyloid-β aggregation

    No full text
    corecore