13 research outputs found

    Effects of thryptophan hydroxylase blockade by p-chlorophenylalanine on contextual memory reconsolidation after training of different intensity

    No full text
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The processes of memory formation and its storage are extremely dynamic. Therefore, the determination of the nature and temporal evolution of the changes that underlie the molecular mechanisms of retrieval and cause reconsolidation of memory is the key to understanding memory formation. Retrieval induces the plasticity, which may result in reconsolidation of the original memory and needs critical molecular events to stabilize the memory or its extinction. 4-Chloro-DL-phenylalanine (P-chlorophenylalanine-PCPA) depresses the most limiting enzyme of serotonin synthesis the tryptophan hydroxylase. It is known that PCPA reduces the serotonin content in the brain up to 10 times in rats (see Methods). We hypothesized that the PCPA could behave the similar way in snails and could reduce the content of serotonin in snails. Therefore, we investigated the effect of PCPA injection on contextual memory reconsolidation using a protein synthesis blocker in snails after training according to two protocols of different intensities. The results obtained in training according to the first protocol using five electrical stimuli per day for 5 days showed that reminding the training environment against the background of injection of PCPA led to a significant decrease in contextual memory. At the same time, the results obtained in training according to the second protocol using three electrical stimuli per day for 5 days showed that reminding the training environment against the injection of PCPA did not result in a significant change in contextual memory. The obtain results allowed us to conclude that the mechanisms of processes developed during the reconsolidation of contextual memory after a reminding depend both on the intensity of learning and on the state of the serotonergic system

    Changes in Membrane and Threshold Potentials of Command Neurons in Terrestrial Snail during Development of a Conditioned Situational Defensive Reflex

    No full text
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature. Changes of the electrical characteristics of command neurons of defensive behavior caused by the development of a conditioned situational defensive reflex were studied experimentally under in vitro conditions on preparations of the nervous system of snails. After learning, the membrane and threshold potentials of command neurons LPa3 and RPa3 significantly decreased and excitability of the studied neurons increased
    corecore