16 research outputs found

    Phase-Field Approach for Faceted Solidification

    Full text link
    We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of using an approximate gamma-plot with rounded cusps that can approach arbitrarily closely the true gamma-plot with sharp cusps that correspond to faceted orientations. The phase-field equations are solved in the thin-interface limit with local equilibrium at the solid-liquid interface [A. Karma and W.-J. Rappel, Phys. Rev. E53, R3017 (1996)]. The convergence of our approach is first demonstrated for equilibrium shapes. The growth of faceted needle crystals in an undercooled melt is then studied as a function of undercooling and the cusp amplitude delta for a gamma-plot of the form 1+delta(|sin(theta)|+|cos(theta)|). The phase-field results are consistent with the scaling law "Lambda inversely proportional to the square root of V" observed experimentally, where Lambda is the facet length and V is the growth rate. In addition, the variation of V and Lambda with delta is found to be reasonably well predicted by an approximate sharp-interface analytical theory that includes capillary effects and assumes circular and parabolic forms for the front and trailing rough parts of the needle crystal, respectively.Comment: 1O pages, 2 tables, 17 figure

    Surface effects in nucleation and growth of smectic B crystals in thin samples

    Full text link
    We present an experimental study of the surface effects (interactions with the container walls) during the nucleation and growth of smectic B crystals from the nematic in free growth and directional solidification of a mesogenic molecule (C4H9(C6H10)2CNC_4H_9-(C_6H_{10})_2CN) called CCH4 in thin (of thickness in the 10 μ\mum range) samples. We follow the dynamics of the system in real time with a polarizing microscope. The inner surfaces of the glass-plate samples are coated with polymeric films, either rubbed polyimid (PI) films or monooriented poly(tetrafluoroethylene) (PTFE) films deposited by friction at high temperature. The orientation of the nematic and the smectic B is planar. In PI-coated samples, the orientation effect of SmB crystals is mediated by the nematic, whereas, in PTFE-coated samples, it results from a homoepitaxy phenomenon occurring for two degenerate orientations. A recrystallization phenomenon partly destroys the initial distribution of crystal orientations. In directional solidification of polycrystals in PTFE-coated samples, a particular dynamics of faceted grain boundary grooves is at the origin of a dynamical mechanism of grain selection. Surface effects also are responsible for the nucleation of misoriented terraces on facets and the generation of lattice defects in the solid.Comment: 15 pages, 24 figures, submitted to PR

    Growth of noncrystallographic dendrites

    No full text

    Quantitative determination of the solidus line in the dilute limit of succinonitrile–camphor alloys

    No full text
    International audienceDifferent phase diagram measurements for succinonitrile–camphor alloys to date have yielded different values of the solute partition coefficient and the freezing range of the alloy. These parameters are critical to model solidification microstructure evolution. New measurements are made to precisely characterize the dilute limit of the succinonitrile–camphor phase diagram using thin-sample directional solidification experiments where convection is negligible, so that solute transport in the melt is purely diffusive, and the temperature gradient is constant in time. These results are confirmed through complementary measurements by differential scanning calorimetry and isothermal annealing. Possible measurement uncertainties in previously measured solidus lines are discussed. Experimental results were further confirmed using a boundary layer model of transient planar interface dynamics
    corecore