52 research outputs found

    Little String Theory from Double-Scaling Limits of Field Theories

    Full text link
    We show that little string theory on S^5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on RxS^2 and RxS^3/Z_k. By matching the gauge theory parameters with those in the gravity duals found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on RxS^2, the 't Hooft coupling must be scaled like ln^3(N), and on RxS^3/Z_k, like ln^2(N). Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S^5.Comment: 16 pages, 5 figures. Minor change

    Radiative capture and electromagnetic dissociation involving loosely bound nuclei: the 8^8B example

    Get PDF
    Electromagnetic processes in loosely bound nuclei are investigated using an analytical model. In particular, electromagnetic dissociation of 8^8B is studied and the results of our analytical model are compared to numerical calculations based on a three-body picture of the 8^8B bound state. The calculation of energy spectra is shown to be strongly model dependent. This is demonstrated by investigating the sensitivity to the rms intercluster distance, the few-body behavior, and the effects of final state interaction. In contrast, the fraction of the energy spectrum which can be attributed to E1 transitions is found to be almost model independent at small relative energies. This finding is of great importance for astrophysical applications as it provides us with a new tool to extract the E1 component from measured energy spectra. An additional, and independent, method is also proposed as it is demonstrated how two sets of experimental data, obtained with different beam energy and/or minimum impact parameter, can be used to extract the E1 component.Comment: Submitted to Phys. Rev. C. 10 pages, 7 figure

    Bound state spectra of three-body muonic molecular ions

    Full text link
    The results of highly accurate calculations are presented for all twenty-two known bound S(L=0)−,P(L=1)−,D(L=2)−S(L = 0)-, P(L = 1)-, D(L = 2)- and F(L=3)−F(L = 3)-states in the six three-body muonic molecular ions ppμ,pdμ,ptμ,ddμ,dtμpp\mu, pd\mu, pt\mu, dd\mu, dt\mu and ttμtt\mu. A number of bound state properties of these muonic molecular ions have been determined numerically to high accuracy. The dependence of the total energies of these muonic molecules upon particle masses is considered. We also discuss the current status of muon-catalysis of nuclear fusion reactions.Comment: This is the final version. All `techical' troubles with the Latex-file have been resolved. A few misprints/mistakes in the text were correcte

    Variation principles for an arbitrary operator (II)

    No full text

    A variation principle for arbitrary operators

    No full text
    • …
    corecore