90 research outputs found

    On V_ud determination from kaon decays

    Get PDF
    The pion beta decay pi^+ -> pi^0 e^+ nu proceeds through pure weak vector hadronic currents and, therefore, the theoretical prediction for it is more reliable than for the processes with axial-vector current contribution. For example, recently the pion beta decay has been used for V_ud determination. The main aim of this letter is to point that kaon beta decay K^0 -> K^+(pi^+ pi^0) e^- nu-bar analogously can be used for this purpose.Comment: 3 pages, no figures, one reference adde

    Effects of Lepton Flavour Violation on Chargino Production at the Linear Collider

    Full text link
    We study the effects of lepton flavour violation (LFV) on the production processes e+e- --> \chi+_i \chi-_j at a linear collider with longitudinal e+ and e- beam polarizations. In the case of LFV the sneutrino mass eigenstates have no definite flavour, therefore, in the t-channel more than one sneutrino mass eigenstate can contribute to the chargino production cross sections. Our framework is the Minimal Supersymmetric Standard Model (MSSM) including LFV terms. We show that in spite of the restrictions on the LFV parameters due to the current limits on rare lepton decays, the cross section \sigma(e+e- --> \chi+_1 \chi-_1) can change by a factor of 2 or more when varying the LFV mixing angles. We point out that even if the present bound on BR(tau- --> e- gamma) improves by a factor of thousand the influence of LFV on the chargino production cross section can be significant. These results could have an important impact on the strategies for determining the underlying model parameters at the linear collider.Comment: 11pp; final version for JHE

    Extracting Br(omega->pi^+ pi^-) from the Time-like Pion Form-factor

    Full text link
    We extract the G-parity-violating branching ratio Br(omega->pi^+ pi^-) from the effective rho-omega mixing matrix element Pi_{rho omega}(s), determined from e^+e^- -> pi^+ pi^- data. The omega->pi^+ pi^- partial width can be determined either from the time-like pion form factor or through the constraint that the mixed physical propagator D_{rho omega}^{mu nu}(s) possesses no poles. The two procedures are inequivalent in practice, and we show why the first is preferred, to find finally Br(omega->pi^+ pi^-) = 1.9 +/- 0.3%.Comment: 12 pages (published version

    Time-reversal violating rotation of polarization plane of light in gas placed in electric field

    Get PDF
    Rotation of polarization plane of light in gas placed in electric field is considered. Different factors causing this phenomenon are investigated. Angle of polarization plane rotation for transition 6S_{1/2} - 7S_{1/2} in cesium (lambda=539 nm) is estimated. The possibility to observe this effect experimentally is discussed.Comment: 10 pages, Late

    Off-shell Behavior of the Ï€â€‰âŁâˆ’â€‰âŁÎ·\pi\!-\!\eta Mixing Amplitude

    Full text link
    We extend a recent calculation of the momentum dependence of the ρ−ω\rho-\omega mixing amplitude to the pseudoscalar sector. The Ï€â€‰âŁâˆ’â€‰âŁÎ·\pi\!-\!\eta mixing amplitude is calculated in a hadronic model where the mixing is driven by the neutron-proton mass difference. Closed-form analytic expressions are presented in terms of a few nucleon-meson parameters. The observed momentum dependence of the mixing amplitude is strong enough as to question earlier calculations of charge-symmetry-breaking observables based on the on-shell assumption. The momentum dependence of the Ï€â€‰âŁâˆ’â€‰âŁÎ·\pi\!-\!\eta amplitude is, however, practically identical to the one recently predicted for ρ−ω\rho-\omega mixing. Hence, in this model, the ratio of pseudoscalar to vector mixing amplitudes is, to a good approximation, a constant solely determined from nucleon-meson coupling constants. Furthermore, by selecting these parameters in accordance with charge-symmetry-conserving data and SU(3)-flavor symmetry, we reproduce the momentum dependence of the Ï€â€‰âŁâˆ’â€‰âŁÎ·\pi\!-\!\eta mixing amplitude predicted from chiral perturbation theory. Alternatively, one can use chiral-perturbation-theory results to set stringent limits on the value of the NNηNN\eta coupling constant.Comment: 13 pages, Latex with Revtex, 3 postscript figures (not included) available on request, SCRI-03089

    Measurement of omega meson parameters in pi^+pi^-pi^0 decay mode with CMD-2

    Full text link
    About 11 200 e^+e^- -> omega -> pi^+pi^-pi^0 events selected in the center of mass energy range from 760 to 810 MeV were used for the measurement of the \omega meson parameters. The following results have been obtained: sigma _{0}=(1457 \pm 23 \pm 19)nb, m_{\omega}=(782.71 \pm 0.07 \pm 0.04) MeV/c^{2}, \Gamma_{\omega}=(8.68 \pm 0.23 \pm 0.10) MeV, \Gamma_{e^+e^-}\cdot Br (\omega -> pi^+pi^-pi^0)= (0.528 \pm 0.012 \pm 0.007) \cdot 10^{-3} MeV.Comment: 8 pages, 4 figure

    The Quark-Photon Vertex and the Pion Charge Radius

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study the low-momentum behavior of the pion electromagnetic form factor. With model gluon parameters previously fixed by the pion mass and decay constant, the pion charge radius rπr_\pi is found to be in excellent agreement with the data. When the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex directly from the quark propagator, less than half of rπ2r_\pi^2 is generated. The remainder of rπ2r^2_\pi is seen to be attributable to the presence of the ρ\rho-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure

    Cross section of the reaction e+e−→π+π−π+π−e^+ e^- \to \pi^+\pi^-\pi^+\pi^- below 1 GeV at CMD-2

    Get PDF
    Using 3.07 pb−1{pb}^{-1} of data collected in the energy range 0.60-0.97 GeV by CMD-2, about 150 events of the process \epm \to \pch have been selected. The energy dependence of the cross section agrees with the assumption of the a1(1260)πa_1(1260) \pi intermediate state which is dominant above 1 GeV. For the first time \fourpi events are observed at the ρ\rho meson energy. Under the assumption that all these events come from the ρ\rho meson decay, the value of the cross section at the ρ\rho meson peak corresponds to the following decay width: \Gamma(\rho^0 \to \fourpi) = (2.8 \pm 1.4 \pm 0.5) {keV} or to the branching ratio B(\rho^0 \to \fourpi) = (1.8 \pm 0.9 \pm 0.3) \cdot 10 ^{-5}.Comment: 15 pages, 5 figure
    • 

    corecore