7 research outputs found

    Constructing Delaunay triangulations along space-filling curves

    Get PDF
    Incremental construction con BRIO using a space-filling curve order for insertion is a popular algorithm for constructing Delaunay triangulations. So far, it has only been analyzed for the case that a worst-case optimal point location data structure is used which is often avoided in implementations. In this paper, we analyze its running time for the more typical case that points are located by walking. We show that in the worst-case the algorithm needs quadratic time, but that this can only happen in degenerate cases. We show that the algorithm runs in O(n logn) time under realistic assumptions. Furthermore, we show that it runs in expected linear time for many random point distributions. This research was supported by the Deutsche Forschungsgemeinschaft within the European graduate program ’Combinatorics, Geometry, and Computation’ (No. GRK 588/2) and by the Netherlands’ Organisation for Scientific Research (NWO) under BRICKS/FOCUS grant number 642.065.503 and project no. 639.022.707

    A survey of solution techniques for the partially observed Markov decision process

    Full text link
    We survey several computational procedures for the partially observed Markov decision process (POMDP) that have been developed since the Monahan survey was published in 1982. The POMDP generalizes the standard, completely observed Markov decision process by permitting the possibility that state observations may be noise-corrupted and/or costly. Several computational procedures presented are convergence accelerating variants of, or approximations to, the Smallwood-Sondik algorithm. Finite-memory suboptimal design results are reported, and new research directions involving heuristic search are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44198/1/10479_2005_Article_BF02204836.pd
    corecore