23 research outputs found

    Nanoparticles for Applications in Cellular Imaging

    Get PDF
    In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Macromolecular Uptake Is a Spontaneous Event during Mitosis in Cultured Fibroblasts: Implications for Vector-dependent Plasmid Transfection

    No full text
    The process through which macromolecules penetrate the plasma membrane of mammalian cells remains poorly defined. We have examined whether natural cellular events modulate the capacity of cells to take up agents applied extraneously. Herein, we report that during mitosis and in a cell type-independent manner, cells exhibit a natural ability to absorb agents present in the extracellular environment up to 150 kDa as assessed using fluorescein isothiocyanate-dextrans. This event is exclusive to the mitotic period and not observed during G0, G1, S, or G2 phase. During mitosis, starting in advanced prophase, oligonucleotides, active enzymes, and polypeptides are efficiently taken into mitotic cells. This uptake of macromolecules during mitosis still takes place in the presence of cytochalasin D or nocodazole, showing no requirement for intact microtubules or actin filaments in this process. However, cell rounding up, which still takes place in the presence of either of these drugs in mitotic cells, appears to be a key event in this process. Indeed, limited trypsinization of adherent cells mimics both the cell retraction and macromolecule uptake observed as cells enter mitosis. A plasmid DNA encoding green fluorescent protein (3.3Mda) coated with an 18 amino acid peptide is efficiently expressed when applied onto synchronized G2/M fibroblasts, whereas little or no expression is observed when the coated plasmid is applied onto asynchronous cell cultures. This shows that such coating peptides are only efficient for their encapsulating and protective effect on the plasmid DNA to be “vectorized” rather than acting as true vectors

    Convergence of Non-clathrin- and Clathrin-derived Endosomes Involves Arf6 Inactivation and Changes in Phosphoinositides

    No full text
    The trafficking of two plasma membrane (PM) proteins that lack clathrin internalization sequences, major histocompatibility complex class I (MHCI), and interleukin 2 receptor α subunit (Tac) was compared with that of PM proteins internalized via clathrin. MHCI and Tac were internalized into endosomes that were distinct from those containing clathrin cargo. At later times, a fraction of these internalized membranes were observed in Arf6-associated, tubular recycling endosomes whereas another fraction acquired early endosomal autoantigen 1 (EEA1) before fusion with the “classical” early endosomes containing the clathrin-dependent cargo, LDL. After convergence, cargo molecules from both pathways eventually arrived, in a Rab7-dependent manner, at late endosomes and were degraded. Expression of a constitutively active mutant of Arf6, Q67L, caused MHCI and Tac to accumulate in enlarged PIP(2)-enriched vacuoles, devoid of EEA1 and inhibited their fusion with clathrin cargo-containing endosomes and hence blocked degradation. By contrast, trafficking and degradation of clathrin-cargo was not affected. A similar block in transport of MHCI and Tac was reversibly induced by a PI3-kinase inhibitor, implying that inactivation of Arf6 and acquisition of PI3P are required for convergence of endosomes arising from these two pathways
    corecore