664 research outputs found

    Quantum corrected geodesics

    Get PDF
    We compute the graviton-induced corrections to the trajectory of a classical test particle. We show that the motion of the test particle is governed by an effective action given by the expectation value (with respect to the graviton state) of the classical action. We analyze the quantum corrected equations of motion for the test particle in two particular backgrounds: a Robertson Walker spacetime and a 2+1 dimensional spacetime with rotational symmetry. In both cases we show that the quantum corrected trajectory is not a geodesic of the background metric.Comment: LaTeX file, 15 pages, no figure

    Fluctuations in the Cosmic Microwave Background I: Form Factors and their Calculation in Synchronous Gauge

    Get PDF
    It is shown that the fluctuation in the temperature of the cosmic microwave background in any direction may be evaluated as an integral involving scalar and dipole form factors, which incorporate all relevant information about acoustic oscillations before the time of last scattering. A companion paper gives asymptotic expressions for the multipole coefficient CC_\ell in terms of these form factors. Explicit expressions are given here for the form factors in a simplified hydrodynamic model for the evolution of perturbations.Comment: 35 pages, no figures. Improved treatment of damping, including both Landau and Silk damping; inclusion of late-time effects; several references added; minor changes and corrections made. Accepted for publication in Phys. Rev. D1

    Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric

    Get PDF
    Continuing our investigation of the regularization of the noise kernel in curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001 (2001)] we adopt the modified point separation scheme for the class of optical spacetimes using the Gaussian approximation for the Green functions a la Bekenstein-Parker-Page. In the first example we derive the regularized noise kernel for a thermal field in flat space. It is useful for black hole nucleation considerations. In the second example of an optical Schwarzschild spacetime we obtain a finite expression for the noise kernel at the horizon and recover the hot flat space result at infinity. Knowledge of the noise kernel is essential for studying issues related to black hole horizon fluctuations and Hawking radiation backreaction. We show that the Gaussian approximated Green function which works surprisingly well for the stress tensor at the Schwarzschild horizon produces significant error in the noise kernel there. We identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX

    From the zero-field metal-insulator transition in two dimensions to the quantum Hall transition: a percolation-effective-medium theory

    Full text link
    Effective-medium theory is applied to the percolation description of the metal-insulator transition in two dimensions with emphasis on the continuous connection between the zero-magnetic-field transition and the quantum Hall transition. In this model the system consists of puddles connected via saddle points, and there is loss of quantum coherence inside the puddles. The effective conductance of the network is calculated using appropriate integration over the distribution of conductances, leading to a determination of the magnetic field dependence of the critical density. Excellent quantitative agreement is obtained with the experimental data, which allows an estimate of the puddle physical parameters

    Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work

    Full text link
    This paper delineates the first steps in a systematic quantitative study of the spacetime fluctuations induced by quantum fields in an evaporating black hole. We explain how the stochastic gravity formalism can be a useful tool for that purpose within a low-energy effective field theory approach to quantum gravity. As an explicit example we apply it to the study of the spherically-symmetric sector of metric perturbations around an evaporating black hole background geometry. For macroscopic black holes we find that those fluctuations grow and eventually become important when considering sufficiently long periods of time (of the order of the evaporation time), but well before the Planckian regime is reached. In addition, the assumption of a simple correlation between the fluctuations of the energy flux crossing the horizon and far from it, which was made in earlier work on spherically-symmetric induced fluctuations, is carefully analyzed and found to be invalid. Our analysis suggests the existence of an infinite amplitude for the fluctuations of the horizon as a three-dimensional hypersurface. We emphasize the need for understanding and designing operational ways of probing quantum metric fluctuations near the horizon and extracting physically meaningful information.Comment: 10 pages, REVTeX; minor changes, a few references added and a brief discussion of their relevance included. To appear in the proceedings of the 10th Peyresq meeting. Dedicated to Rafael Sorkin on the occasion of his 60th birthda

    Finite-temperature scalar fields and the cosmological constant in an Einstein universe

    Get PDF
    We study the back reaction effect of massless minimally coupled scalar field at finite temperatures in the background of Einstein universe. Substituting for the vacuum expectation value of the components of the energy-momentum tensor on the RHS of the Einstein equation, we deduce a relationship between the radius of the universe and its temperature. This relationship exhibit a maximum temperature, below the Planck scale, at which the system changes its behaviour drastically. The results are compared with the case of a conformally coupled field. An investigation into the values of the cosmological constant exhibit a remarkable difference between the conformally coupled case and the minimally coupled one.Comment: 7 pages, 2 figure

    Automatic Structure Detection in Constraints of Tabular Data

    Full text link
    Abstract. Methods for the protection of statistical tabular data—as controlled tabular adjustment, cell suppression, or controlled rounding— need to solve several linear programming subproblems. For large multi-dimensional linked and hierarchical tables, such subproblems turn out to be computationally challenging. One of the techniques used to reduce the solution time of mathematical programming problems is to exploit the constraints structure using some specialized algorithm. Two of the most usual structures are block-angular matrices with either linking rows (primal block-angular structure) or linking columns (dual block-angular structure). Although constraints associated to tabular data have intrin-sically a lot of structure, current software for tabular data protection neither detail nor exploit it, and simply provide a single matrix, or at most a set of smallest submatrices. We provide in this work an efficient tool for the automatic detection of primal or dual block-angular struc-ture in constraints matrices. We test it on some of the complex CSPLIB instances, showing that when the number of linking rows or columns is small, the computational savings are significant

    Performance analysis on transfer platforms in frame bridge based automated container terminals

    Get PDF
    10.1155/2013/593847Mathematical Problems in Engineering2013

    The Primordial Gravitational Wave Background in String Cosmology

    Get PDF
    We find the spectrum P(w)dw of the gravitational wave background produced in the early universe in string theory. We work in the framework of String Driven Cosmology, whose scale factors are computed with the low-energy effective string equations as well as selfconsistent solutions of General Relativity with a gas of strings as source. The scale factor evolution is described by an early string driven inflationary stage with an instantaneous transition to a radiation dominated stage and successive matter dominated stage. This is an expanding string cosmology always running on positive proper cosmic time. A careful treatment of the scale factor evolution and involved transitions is made. A full prediction on the power spectrum of gravitational waves without any free-parameters is given. We study and show explicitly the effect of the dilaton field, characteristic to this kind of cosmologies. We compute the spectrum for the same evolution description with three differents approachs. Some features of gravitational wave spectra, as peaks and asymptotic behaviours, are found direct consequences of the dilaton involved and not only of the scale factor evolution. A comparative analysis of different treatments, solutions and compatibility with observational bounds or detection perspectives is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra
    corecore