2,274 research outputs found
Developing Resource Usage Service in WLCG
According to the Memorandum of Understanding (MoU) of the World-wide LHC Computing Grid (WLCG) project, participating sites are required to provide resource usage or accounting data to the Grid Operational Centre (GOC) to enrich the understanding of how shared resources are used, and to provide information for improving the effectiveness of resource allocation. As a multi-grid environment, the accounting process of WLCG is currently enabled by four accounting systems, each of which was developed independently by constituent grid projects. These accounting systems were designed and implemented based on project-specific local understanding of requirements, and therefore lack interoperability. In order to automate the accounting process in WLCG, three transportation methods are being introduced for streaming accounting data metered by heterogeneous accounting systems into GOC at Rutherford Appleton Laboratory (RAL) in the UK, where accounting data are aggregated and accumulated throughout the year. These transportation methods, however, were introduced on a per accounting-system basis, i.e. targeting at a particular accounting system, making them hard to reuse and customize to new requirements. This paper presents the design of WLCG-RUS system, a standards-compatible solution providing a consistent process for streaming resource usage data across various accounting systems, while ensuring interoperability, portability, and customization
Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes
A wide field of view Cherenkov/fluorescence telescope array is one of the
main components of the Large High Altitude Air Shower Observatory project. To
serve as Cherenkov and fluorescence detectors, a flexible and mobile design is
adopted for easy reconfiguring of the telescope array. Two prototype telescopes
have been constructed and successfully run at the site of the ARGO-YBJ
experiment in Tibet. The features and performance of the telescopes are
presented
Equilibrium and dynamical properties of the ANNNI chain at the multiphase point
We study the equilibrium and dynamical properties of the ANNNI (axial
next-nearest-neighbor Ising) chain at the multiphase point. An interesting
property of the system is the macroscopic degeneracy of the ground state
leading to finite zero-temperature entropy. In our equilibrium study we
consider the effect of softening the spins. We show that the degeneracy of the
ground state is lifted and there is a qualitative change in the low temperature
behaviour of the system with a well defined low temperature peak of the
specific heat that carries the thermodynamic ``weight'' of the ground state
entropy. In our study of the dynamical properties, the stochastic Kawasaki
dynamics is considered. The Fokker-Planck operator for the process corresponds
to a quantum spin Hamiltonian similar to the Heisenberg ferromagnet but with
constraints on allowed states. This leads to a number of differences in its
properties which are obtained through exact numerical diagonalization,
simulations and by obtaining various analytic bounds.Comment: 9 pages, RevTex, 6 figures (To appear in Phys. Rev. E
A Lattice Study of the Magnetic Moment and the Spin Structure of the Nucleon
Using an approach free from momentum extrapolation, we calculate the nucleon
magnetic moment and the fraction of the nucleon spin carried by the quark
angular momentum in the quenched lattice QCD approximation. Quarks with three
values of lattice masses, 210, 124 and 80 MeV, are formulated on the lattice
using the standard Wilson approach. At every mass, 100 gluon configurations on
16^3 x 32 lattice with \beta=6.0 are used for statistical averaging. The
results are compared with the previous calculations with momentum
extrapolation. The contribution of the disconnected diagrams is studied at the
largest quark mass using noise theory technique.Comment: 14 pages, 3 figures, Talk given at Lattice2001, Berlin, German
The electronic specific heat in the pairing pseudogap regime
When pairing correlations in a quasi two dimensional electron system induce a
pseudogap in the single particle density of states, the specific heat must also
contain a sizeable pair contribution. The theoretically calculated specific
heat for such a system is compared to the experimental results of Loram and his
collaborators for underdoped YBa_2Cu_3O_{6+x} and La_{2-x}Sr_{x}CuO_4 samples.
The size and doping dependence of the extracted pseudogap energy scale for both
materials is comparable to the values obtained from a variety of other
experiments.Comment: 4 pages, 5 eps figure
Aquatics reconstruction software: the design of a diagnostic tool based on computer vision algorithms
Computer vision methods can be applied to a variety of medical and surgical applications, and many techniques and algorithms are available that can be used to recover 3D shapes and information from images range and volume data. Complex practical applications, however, are rarely approachable with a single technique, and require detailed analysis on how they can be subdivided in subtasks that are computationally treatable and that, at the same time, allow for the appropriate level of user-interaction. In this paper we show an example of a complex application where, following criteria of efficiency, reliability and user friendliness, several computer vision techniques have been selected and customized to build a system able to support diagnosis and endovascular treatment of Abdominal Aortic Aneurysms. The system reconstructs the geometrical representation of four different structures related to the aorta (vessel lumen, thrombus, calcifications and skeleton) from CT angiography data. In this way it supports the three dimensional measurements required for a careful geometrical evaluation of the vessel, that is fundamental to decide if the treatment is necessary and to perform, in this case, its planning. The system has been realized within the European trial AQUATICS (IST-1999-20226 EUTIST-M WP 12), and it has been widely tested on clinical data
Top Quark Decays into Heavy Quark Mesons
For top quark decays into heavy quark mesons and , a
complete calculation to the leading order both in QCD coupling constant
and in , the typical velocity of the heavy quarks inside the
mesons, is performed. Relatons between the top quark mass and the decay
branching ratios are studied. Comparion with the results which are obtained by
using the quark frangmentation functions is also discussed. The branching
ratios are consistent (within a factor of ) with that obtained using
fragmentation functions at GeV.Comment: 15 pages in LaTex form, 4 figures include
Bound state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry
The energy spectra and the corresponding two- component spinor wavefunctions
of the Dirac equation for the Rosen-Morse potential with spin and pseudospin
symmetry are obtained. The wave ( state) solutions for this
problem are obtained by using the basic concept of the supersymmetric quantum
mechanics approach and function analysis (standard approach) in the
calculations. Under the spin symmetry and pseudospin symmetry, the energy
equation and the corresponding two-component spinor wavefunctions for this
potential and other special types of this potential are obtained. Extension of
this result to state is suggested.Comment: 18 page
Study of Thermal Properties of Graphene-Based Structures Using the Force Constant Method
The thermal properties of graphene-based materials are theoretically
investigated. The fourth-nearest neighbor force constant method for phonon
properties is used in conjunction with both the Landauer ballistic and the
non-equilibrium Green's function techniques for transport. Ballistic phonon
transport is investigated for different structures including graphene, graphene
antidot lattices, and graphene nanoribbons. We demonstrate that this particular
methodology is suitable for robust and efficient investigation of phonon
transport in graphene-based devices. This methodology is especially useful for
investigations of thermoelectric and heat transport applications.Comment: 23 pages, 9 figures, 1 tabl
The role of orbital angular momentum in the proton spin
The orbital angular momenta and of up and down quarks in the
proton are estimated as functions of the energy scale as model-independently as
possible, on the basis of Ji's angular momentum sum rule. This analysis
indicates that is large and negative even at low energy scale of
nonperturbative QCD, in contrast to Thomas' similar analysis based on the
refined cloudy bag model. We pursuit the origin of this apparent discrepancy
and suggest that it may have a connection with the fundamental question of how
to define quark orbital angular momenta in QCD.Comment: 14 pages, 3 figures, 1 table A slightly extended version to appear in
Eur. Phys. J.
- …
