5 research outputs found

    Limitations in the design of ancillary service markets imposed by communication network delays

    Get PDF
    Real-time balancing of the European electricity grid will become increasingly dependent on market-based control mechanisms that are enabled by connecting millions of prosumers to an open communication network. The use of communication systems inevitably introduces delays in the energy balancing control loop, which could endanger market operation and stability of the electricity grid. By investigating the interaction between price-based control algorithms for real-time balancing and information and communication technology, we aim to provide systematic design rules for unrestricted ancillary service markets

    A cDNA-AFLP based strategy to identify transcripts associated with avirulence in Phytophthora infestans

    No full text
    Expression profiling using cDNA-AFLP is commonly used to display the transcriptome of a specific tissue or developmental stage. Here, cDNA-AFLP was used to identify transcripts in a segregating F1 population of Phytophthora infestans, the oomycete pathogen that causes late blight. To find transcripts derived from putative avirulence (Avr) genes germinated cyst cDNA from F1 progeny with defined avirulence phenotypes was pooled and used in a bulked segregant analysis (BSA). Over 30,000 transcript derived fragments (TDFs) were screened resulting in 99 Avr-associated TDFs as well as TDFs with opposite pattern. With 142 TDF sequences homology searches and database mining was carried out. cDNA-AFLP analysis on individual F1 progeny revealed 100% co-segregation of four TDFs with particular AVR phenotypes and this was confirmed by RT-PCR. Two match the same P. infestans EST with unknown sequence and this is a likely candidate for Avr4. The other two are associated with the Avr3b-Avr10-Avr11 locus. This combined cDNA-AFLP/BSA strategy is an efficient approach to identify Avr-associated transcriptome markers that can complement positional cloning

    SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin

    No full text
    The world's oldest and largest Medicago truncatula collection is housed at the South Australian Research and Development Institute (SARDI). We used six simple sequence repeat (SSR) loci to analyse the genetic diversity and relationships between randomly selected individuals from 192 accessions in the core collection. M. truncatula is composed of three subspecies (ssp.): ssp. truncatula, ssp. longeaculeata, and ssp. tricycla. Analysis at the level of six SSR loci supports the concept of ssp. tricycla, all the samples of which showed unique alleles at two loci. Contingency Chi-squared tests were significant between ssp. tricycla and ssp. truncatula at four loci, suggesting a barrier to gene flow between these subspecies. In accessions defined as ssp. longeaculeata, no unique allelic distribution or diagnostic sizes were observed, suggesting this apparent ssp. is a morphological variant of ssp. truncatula. The data also suggest M. truncatula that exhibits unusually wide genotype dispersal throughout its native Mediterranean region, possibly due to animal and trade-related movements. Our results showed the collection to be highly diverse, exhibiting an average of 25 SSR alleles per locus, with over 90% of individuals showing discrete genotypes. The rich diversity of the SARDI collection provides an invaluable resource for studying natural allelic variation of M. truncatula. To efficiently exploit the variation in the SARDI collection, we have defined a subset of accessions (n = 61) that maximises the diversity
    corecore