17 research outputs found

    Diagnostics of non-tuberculous mycobacteria

    Get PDF
    To date, 128 mycobacterial species have been characterised, ranging from non-pathogenic to pathogenic for humans. Molecular methods contributed significantly to the identification of the species, replacing conventional laborious methods. In this thesis, the design and application of a genus-specific real-time PCR, for the rapid detection of non-tuberculous mycobacteria in clinical materials, was described. The technique was extremely useful for the rapid detection of the slowgrowing Mycobacterium species. Addition of species-specific probes to the ITS assay, identified M. haemophilum to be present in previously undiagnosed skin inflammation and resulted in the recognition of M. haemophilum as the second most common mycobacterial species causing lymphadenitis. Subsequent Amplified Fragment Length Polymorphism analysis of M. haemophilum isolates showed this species to posses an extremely low mutation rate. Also, M. haemophilum lymphadenitis cases are suspected to have a common source, most likely piped water, in contrast to M. avium infections, which appear to originate from variable environmental sources as was underscribed by Restriction Fragment Length Polymorphism analysis. Contamination with saprophytic mycobacterial DNA is problematic for the current NTM detection in clinical materials. This and other bottlenecks in the molecular diagnostics of NTM were addressed in this thesis as well.UBL - phd migration 201

    Parasitological diagnosis combining an internally controlled real-time PCR assay for the detection of four protozoa in stool samples with a testing algorithm for microscopy

    Get PDF
    AbstractMolecular detection of gastrointestinal protozoa is more sensitive and more specific than microscopy but, to date, has not routinely replaced time-consuming microscopic analysis. Two internally controlled real-time PCR assays for the combined detection of Entamoeba histolytica, Giardia lamblia, Cryptosporidium spp. and Dientamoeba fragilis in single faecal samples were compared with Triple Faeces Test (TFT) microscopy results from 397 patient samples. Additionally, an algorithm for complete parasitological diagnosis was created. Real-time PCR revealed 152 (38.3%) positive cases, 18 of which were double infections: one (0.3%) sample was positive for E. histolytica, 44 (11.1%) samples were positive for G. lamblia, 122 (30.7%) samples were positive for D. fragilis, and three (0.8%) samples were positive for Cryptosporidium. TFT microscopy yielded 96 (24.2%) positive cases, including five double infections: one sample was positive for E. histolytica/Entamoeba dispar, 29 (7.3%) samples were positive for G. lamblia, 69 (17.4%) samples were positive for D. fragilis, and two (0.5%) samples were positive for Cryptosporidium hominis/Cryptosporidium parvum. Retrospective analysis of the clinical patient information of 2887 TFT sets showed that eosinophilia, elevated IgE levels, adoption and travelling to (sub)tropical areas are predisposing factors for infection with non-protozoal gastrointestinal parasites. The proposed diagnostic algorithm includes application of real-time PCR to all samples, with the addition of microscopy on an unpreserved faecal sample in cases of a predisposing factor, or a repeat request for parasitological examination. Application of real-time PCR improved the diagnostic yield by 18%. A single stool sample is sufficient for complete parasitological diagnosis when an algorithm based on clinical information is applied

    Multi-centre evaluation of real-time multiplex PCR for detection of carbapenemase genes OXA-48, VIM, IMP, NDM and KPC

    Get PDF
    Background: Resistance to carbapenem antibiotics is emerging worldwide among Enterobacteriaceae. To prevent hospital transmission due to unnoticed carriage of carbapenemase producing micro-organisms in newly admitted patients, or follow-up of patients in an outbreak setting, a molecular screening method was developed for detection of the most prevalent carbapenemase genes; blaOXA-48, blaVIM, blaIMP, blaNDM and blaKPC.Methods: A real-time multiplex PCR assay was evaluated using a collection of 86 Gram negative isolates, including 62 carbapenemase producers. Seven different laboratories carried out this method and used the assay for detection of the carbapenemase genes on a selection of 20 isolates.Results: Both sensitivity and specificity of the multiplex PCR assay was 100%, as established by results on the strain collection and the inter-laboratory comparisons.Conclusions: In this study, we present a multiplex real-time PCR that is a robust, reliable and rapid method for the detection of the most prevalent carbapenemases blaOXA-48, blaVIM, blaIMP, blaNDM and blaKPC, and is suitable for screening of broth cultured rectal swabs and for identification of carbapenemase genes in cultures

    Lymphadenitis in children is caused by Mycobacterium avium hominissuis and not related to 'bird tuberculosis'

    Get PDF
    Mycobacterium avium is the most commonly encountered mycobacterium species among non-Mycobacterium tuberculosis complex (nontuberculous mycobacteria) isolates worldwide and frequently causes lymphadenitis in children. During a multi-centre study in The Netherlands that was performed to determine the optimal treatment for mycobacterial lymphadenitis, concern was expressed in the media about the possible role of birds as sources of these M. avium infections, referred to as ‘bird tuberculosis.’ To examine the involvement of birds in mycobacterial lymphadenitis, 34 M. avium isolates from lymphadenitis cases were subjected to IS1245 restriction fragment length polymorphism (RFLP) typing. This genotyping method enables the distinction of the subspecies M. avium subsp. hominissuis and the ‘bird-type’ M. avium spp. avium. Highly variable RFLP patterns were found among the lymphadenitis M. avium isolates, and all belonged to the M. avium hominissuis subspecies. A relation to pet birds in the etiology of mycobacterial lymphadenitis could not be established, and the source of the infections may be environmental
    corecore