4 research outputs found

    Prerequisites and strategies for prenatal diagnosis of respiratory chain deficiency in chorionic villi.

    No full text
    Item does not contain fulltextPrenatal diagnosis for respiratory chain deficiencies is a complex procedure that requires a thorough diagnostic work-up of the index patient. This includes confirmation of the clinical and metabolic evaluations through histological and enzymatic examinations of tissue biopsies. Prenatal diagnosis currently relies on biochemical assays of respiratory chain complexes in chorionic villi or amniocytes and is possible by mutation analysis of nuclear genes in a limited but increasing proportion of cases. Based on a recent survey of prenatal diagnosis in families with complex I and complex IV deficiencies, performed at Nijmegen Centre for Mitochondrial Disorders (NCMD), prerequisites and strategies for performing prenatal diagnosis have been developed to increase reliability. Biochemical investigations in chorionic villi can be done reliably if the respiratory chain enzyme deficiency is expressed in both skeletal muscle and skin fibroblasts to rule out tissue specificity. No mitochondrial DNA defects must be suspected or established. The NCMD does not offer prenatal diagnosis until all the prerequisites have been confirmed. We expect prenatal diagnosis at the molecular level to become more feasible in time as the mutational spectrum broadens with advances in medical research

    Prenatal diagnosis of NADH:ubiquinone oxidoreductase deficiency.

    No full text
    Item does not contain fulltextNADH:ubiquinone oxidoreductase (complex I of the mitochondrial respiratory chain) deficiency is a severe disorder with an often early fatal outcome. Prenatal diagnosis for complex I defects currently relies mainly on biochemical assays of complex I in fetal tissues such as chorionic villi (CV), and is only in a minority of cases possible by means of mutational analysis of nuclear-encoded genes of complex I. We report on our experience to date with prenatal diagnosis in pregnancies at risk for complex I deficiency. We measured complex I activity in native CV and/or cultured CV in 23 pregnancies in 15 families. In accordance with the results of the investigations in CV, 15 children were born clinically unaffected. Two prenatally diagnosed unaffected fetuses and two prenatally diagnosed affected fetuses were lost prematurely with spontaneous or provoked abortions, respectively. Two affected children were born (prenatally found to be affected). In two pregnancies a discrepancy between native and cultured cells was found. We conclude that prenatal diagnosis for complex I deficiency can be reliably performed. Pitfalls were encountered in using cultured CV as a result of maternal cell contamination (MCC). Future research on pathogenic nuclear mutations underlying complex I deficiency will extend the possibilities for prenatal diagnosis at the molecular level

    Probiotics and immunity

    No full text
    corecore