33 research outputs found

    An interacting scalar field and the recent cosmic acceleration

    Full text link
    In this paper it is shown that the Brans - Dicke scalar field itself can serve the purpose of providing an early deceleration and a late time acceleration of the universe without any need of quintessence field if one considers an interaction, i.e, transfer of energy between the dark matter and the Brans - Dicke scalar field.Comment: 10 pages, 2 figure

    Thermoelectric power of nondegenerate Kane semiconductors under the conditions of mutual electron-phonon drag in a high electric field

    Full text link
    The thermoelectric power of nondegenerate Kane semiconductors with due regard for the electron and phonon heating, and their thermal and mutual drags is investigated. The electron spectrum is taken in the Kane two-band form. It is shown that the nonparabolicity of electron spectrum significantly influences the magnitude of the thermoelectric power and leads to a change of its sign and dependence on the heating electric field. The field dependence of the thermoelectric power is determined analytically under various drag conditions.Comment: 25 pages, RevTex formatted, 3 table

    Thermal conductivity via magnetic excitations in spin-chain materials

    Full text link
    We discuss the recent progress and the current status of experimental investigations of spin-mediated energy transport in spin-chain and spin-ladder materials with antiferromagnetic coupling. We briefly outline the central results of theoretical studies on the subject but focus mainly on recent experimental results that were obtained on materials which may be regarded as adequate physical realizations of the idealized theoretical model systems. Some open questions and unsettled issues are also addressed.Comment: 17 pages, 4 figure

    Singularities in scalar-tensor gravity

    Full text link
    The analysis of certain singularities in scalar-tensor gravity contained in a recent paper is completed, and situations are pointed out in which these singularities cannot occur.Comment: 6 pages, LaTe

    Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder

    Full text link
    We have studied how 2- and 3- dimensional systems made up of particles interacting with finite range, repulsive potentials jam (i.e., develop a yield stress in a disordered state) at zero temperature and applied stress. For each configuration, there is a unique jamming threshold, Ο•c\phi_c, at which particles can no longer avoid each other and the bulk and shear moduli simultaneously become non-zero. The distribution of Ο•c\phi_c values becomes narrower as the system size increases, so that essentially all configurations jam at the same Ο•\phi in the thermodynamic limit. This packing fraction corresponds to the previously measured value for random close-packing. In fact, our results provide a well-defined meaning for "random close-packing" in terms of the fraction of all phase space with inherent structures that jam. The jamming threshold, Point J, occurring at zero temperature and applied stress and at the random close-packing density, has properties reminiscent of an ordinary critical point. As Point J is approached from higher packing fractions, power-law scaling is found for many quantities. Moreover, near Point J, certain quantities no longer self-average, suggesting the existence of a length scale that diverges at J. However, Point J also differs from an ordinary critical point: the scaling exponents do not depend on dimension but do depend on the interparticle potential. Finally, as Point J is approached from high packing fractions, the density of vibrational states develops a large excess of low-frequency modes. All of these results suggest that Point J may control behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure

    Observational Consequences of Evolution of Primordial Fluctuations in Scalar-Tensor Cosmology

    Get PDF
    Evolution of primordial fluctuations in a Brans-Dicke type scalar-tensor gravity theory is comprehensively investigated. The harmonic attractor model, in which the scalar field has its harmonic effective potential in the Einstein conformal frame and the theory relaxes toward Einstein gravity with time, is considered. The evolution of adiabatic initial perturbations in flat SCDM models is examined from the radiation-dominated epoch up to the present. We discuss how the scalar-tensor gravity affects the evolution of metric and matter perturbations, mainly focusing on the observational consequences, i.e., the matter power spectrum and the power spectrum of cosmic microwave background temperature. We find that the early time deviation is characterized only by the large static gravitational constant while the late time behavior is qualitatively different from that in Einstein gravity because the time variation of the gravitational constant and its fluctuation have non-negligible effects. The attracting scalar-tensor gravity affects only small scale modes due to its attracting nature, the degree of which is far beyond the post-Newtonian deviation at the present epoch.Comment: 18 page

    Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ морфологичСской диагностикС нСйроэндокринных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΈΡ… клиничСского тСчСния Π½Π° основС Π°Π½Π°Π»ΠΈΠ·Π° собствСнной Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ…

    No full text
    Aim: Combined clinical and morphological analysis of the pancreatic neuroendocrine tumor (pNET) spectrum according to the new World Health Organization classification: patient distribution, hormonal status, morphological grading, somatostatin receptor 2 (SSR2) and 5 (SSR5) expression, the choice of tissue-specific markers for the differential diagnosis of primary NET in the pancreas based on metastases with unknown primary tumor.Materials and methods: The study was performed with 472 tissue samples from pNETs taken from patients. Morphological analysis consisted of histological and immunohistochemical examination with a panel of antibodies to chromogranin A, synaptophysin, CD56, insulin, glucagon, somatostatin, gastrin, calcitonin, adrenocorticotropic hormone (ACTH), serotonin, pancreatic polypeptide, cytokeratins (CK) of a wide spectrum, CK7 and CK19, p53, Ki-67, SSR 2 and SSR5, PDX-1, Isl-1, and NESP-55.Results: In women, the prevalence of pNETS was 2.3 higher than in men (2.3:1). We were able to identify 299 (63.3%) insulinomas, 134 (28.4%) non-functioning NETs, 28 (5.9%) gastrinomas and 1.8% rare tumors (somatostatinomas, β€œcalcitoninomas” and ACTH-producing). Metastatic tumors were found in 16.5% of the cases. Multiple endocrine neoplasia syndrome type 1 was confirmed in 11.9% of the pNET patients, and in 30.8% of those aged below 30 years. Multiple tumors (2 to 10) were found in 32 patients by the time of the diagnosis or occurred at 7 to 18 years after initial surgery. 28.3% of the tumors were CK19-positive, with 54.4% of them being metastatic. Insulinomas were least prone to metastasizing (5.7% of the cases), with 41.2% of them being CK19-positive. Metastases were found in 70.4, 66.7, 100, and 100% of gastrinomas, β€œcalcitoninomas”, ACTH-producing, and somatostatinomas, respectively, with CK19-positivity found in 85.2, 66.7, 66.7, and 100% of these tumors. SSR2 expression was observed in all gastrinomas and β€œcalcitoninomas”, in 90.5% of β€œglucagonomas”, 85.7% of PPomas, and 66.7% of somatostatinomas. SSR5 expression was significantly less frequent. 86.3% of the studied tumors were PDX-1-positive: all somatostatinomas, 97.4% of insulinomas, 92.3% of gastrinomas, 83.3% of PPomas, 80% of the non-functioning NETs. PDX-1-negativity was identified in all β€œcalcitoninomas” and in 57.1% of the non-functioning β€œglucagonomas”. 83.3% and 90.9% of the pNETs were Isl-1 and NESP-55-positive, respectively.Conclusion: Combined morphological and immunohistochemical examination of pNETs allows for the correct diagnosis, assessment of their prognosis and choice of the most effective treatment. The malignancy grade of pNETs depends on the cell immunophenotype and is higher in the cases with co-expression of the markers of neuroendocrine and ductal differentiation (CK19), as well as with ectopic hormonal production.ЦСль – комплСксный ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-морфологичСский Π°Π½Π°Π»ΠΈΠ· спСктра нСйроэндокринных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ (НЭО) ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (ΠŸΠ–) согласно Π½ΠΎΠ²ΠΎΠΉ классификации ВсСмирной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ здравоохранСния (2017): состав ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Π³ΠΎΡ€ΠΌΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ статус, морфологичСскиС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ злокачСствСнности, экспрСссия Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΠΊ соматостатину 2 (Π‘Π‘Π  2) ΠΈ 5-Π³ΠΎ Ρ‚ΠΈΠΏΠΎΠ² (Π‘Π‘Π  5), Π²Ρ‹Π±ΠΎΡ€ тканСспСцифичСских ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² для Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ диагностики ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ НЭО Π² ΠŸΠ– ΠΏΠΎ мСтастазам Π±Π΅Π· извСстного ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΎΡ‡Π°Π³Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ исслСдования послуТили 472 ΠΎΠ±Ρ€Π°Π·Ρ†Π° Ρ‚ΠΊΠ°Π½ΠΈ НЭО ΠŸΠ– ΠΎΡ‚ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· Π²ΠΊΠ»ΡŽΡ‡Π°Π» гистологичСский ΠΈ иммуногистохимичСский ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования со спСктром Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ Ρ…Ρ€ΠΎΠΌΠΎΠ³Ρ€Π°Π½ΠΈΠ½Ρƒ А, синаптофизину, CD56, инсулину, Π³Π»ΡŽΠΊΠ°Π³ΠΎΠ½Ρƒ, соматостатину, гастрину, ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚ΠΎΠ½ΠΈΠ½Ρƒ, Π°Π΄Ρ€Π΅Π½ΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠΌΡƒ Π³ΠΎΡ€ΠΌΠΎΠ½Ρƒ (ΠΠšΠ’Π“), сСротонину, панкрСатичСскому ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρƒ, Ρ†ΠΈΡ‚ΠΎΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½Π°ΠΌ (ЦК) ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ спСктра, ЦК 7 ΠΈ 19, p53, Ki-67, Π‘Π‘Π  2 ΠΈ Π‘Π‘Π  5, PDX-1, Isl-1, NESP55.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. НЭО ΠŸΠ– Π²ΡΡ‚Ρ€Π΅Ρ‡Π°Π»ΠΈΡΡŒ Ρƒ ΠΆΠ΅Π½Ρ‰ΠΈΠ½ Π² 2,3 Ρ€Π°Π·Π° Ρ‡Π°Ρ‰Π΅, Ρ‡Π΅ΠΌ Ρƒ ΠΌΡƒΠΆΡ‡ΠΈΠ½ (2,3:1). Π‘Ρ‹Π»ΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ 299 (63,3%) инсулином, 134 (28,4%) Π½Π΅Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… НЭО, 28 (5,9%) гастрином ΠΈ 1,8% Ρ€Π΅Π΄ΠΊΠΈΡ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ (соматостатином, Β«ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚ΠΎΠ½ΠΈΠ½ΠΎΠΌΒ» ΠΈ ΠΠšΠ’Π“-ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…). ΠœΠ΅Ρ‚Π°ΡΡ‚Π°Π·Ρ‹ Π±Ρ‹Π»ΠΈ выявлСны Π² 16,5% случаСв. Π‘ΠΈΠ½Π΄Ρ€ΠΎΠΌ мноТСствСнных эндокринных Π½Π΅ΠΎΠΏΠ»Π°Π·ΠΈΠΉ 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° Π±Ρ‹Π» ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ Ρƒ 11,9% ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с НЭО ΠŸΠ–, Π° Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² возрастС Π΄ΠΎ 30 Π»Π΅Ρ‚ – Π² 30,8% случаСв. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ (ΠΎΡ‚ 2 Π΄ΠΎ 10) Ρƒ 32 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π±Ρ‹Π»ΠΈ Π½Π° ΠΌΠΎΠΌΠ΅Π½Ρ‚ установлСния Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° ΠΈΠ»ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π»ΠΈ Ρ‡Π΅Ρ€Π΅Π· 7–18 Π»Π΅Ρ‚ послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. ЦК19-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π±Ρ‹Π»ΠΈ 28,3% ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ, ΠΈΠ· Π½ΠΈΡ… 54,4% с мСтастазами. Π Π΅ΠΆΠ΅ всСго (Π² 5,7% случаСв) мСтастазы Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΈ инсулиномах, ΠΈΠ· Π½ΠΈΡ… 41,2% Π±Ρ‹Π»ΠΈ ЦК19-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ. ΠœΠ΅Ρ‚Π°ΡΡ‚Π°Π·Ρ‹ Π² гастриномах, Β«ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚ΠΎΠ½ΠΈΠ½ΠΎΠΌΠ°Ρ…Β», ΠΠšΠ’Π“-ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… опухолях, соматостатиномах Π²ΡΡ‚Ρ€Π΅Ρ‡Π°Π»ΠΈΡΡŒ Π² 70,4, 66,7, 100 ΠΈ 100% случаСв, ЦК19-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π±Ρ‹Π»ΠΈ 85,2, 66,7, 66,7 ΠΈ 100% ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ соотвСтствСнно. ЭкспрСссия Π‘Π‘Π  2 наблюдалась Π²ΠΎ всСх гастриномах ΠΈ Β«ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚ΠΎΠ½ΠΈΠ½ΠΎΠΌΠ°Ρ…Β», Π² 90,5% «глюкагоном», 85,7% Β«ΠΏΠΈΠΏΠΎΠΌΒ», 66,7% соматостатином; экспрСссия Π‘Π‘Π  5 ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π΅ΠΆΠ΅. PDX-1-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π±Ρ‹Π»ΠΈ 86,3% исслСдованных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ, всС (100%) соматостатиномы, 97,4% инсулином, 92,3% гастрином, 83,3% Β«ΠΏΠΈΠΏΠΎΠΌΒ», 80% Π½Π΅Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… НЭО, PDX-1Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ – всС (100%) Β«ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚ΠΎΠ½ΠΈΠ½ΠΎΠΌΡ‹Β» ΠΈ 57,1% Π½Π΅Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… «глюкагоном». Isl-1 ΠΈ NESP-55-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π±Ρ‹Π»ΠΈ 83,3 ΠΈ 90,9% НЭО ΠŸΠ–.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. КомплСксноС морфологичСскоС ΠΈ иммуногистохимичСскоС исслСдованиС НЭО ΠŸΠ– позволяСт ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π΄ΠΈΠ°Π³Π½ΠΎΠ·, ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ· ΠΈ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивноС Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅. ЗлокачСствСнный ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» НЭО ΠŸΠ– зависит ΠΎΡ‚ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΎΠ½ Π²Ρ‹ΡˆΠ΅ ΠΏΡ€ΠΈ ΠΊΠΎ-экспрСссии ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² нСйроэндокринной ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ (ЦК19) ΠΈ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ эктопичСских Π³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ²
    corecore