174 research outputs found
Nanoengineering Carbon Allotropes from Graphene
Monolithic structures can be built into graphene by the addition and
subsequent re-arrangement of carbon atoms. To this end, ad-dimers of carbon are
a particularly attractive building block because a number of emerging
technologies offer the promise of precisely placing them on carbon surfaces. In
concert with the more common Stone-Wales defect, repeating patterns can be
introduced to create as yet unrealized materials. The idea of building such
allotropes out of defects is new, and we demonstrate the technique by
constructing two-dimensional carbon allotropes known as haeckelite. We then
extend the idea to create a new class of membranic carbon allotropes that we
call \emph{dimerite}, composed exclusively of ad-dimer defects.Comment: 5 pages, 5 figure
HRQOL and subjective well-being: noncomplementary forms of outcome measurement
This review considers some of the broad principles that concern quality of life assessment. These are discussed in relation to health-related quality of life (HRQOL) and the measurement of subjective well-being. It is argued that there are serious logical and methodological issues concerning HRQOL measurement, to the extent that the instruments may not be regarded as valid measures of life quality as this term is generally understood. It is recommended that HRQOL measurement be abandoned in favor of three separate forms of measurement as medical symptoms, subjective well-being and specific dimensions of psychological ill-being. <br /
The role of molecular biomarkers in recurrent glioblastoma trials:an assessment of the current trial landscape of genome-driven oncology
For glioblastoma patients, the efficacy-targeted therapy is limited to date. Most of the molecular therapies previously studied are lacking efficacy in this population. More trials are needed to study the actual actionability of biomarkers in (recurrent) glioblastoma. This study aimed to assess the current clinical trial landscape to assess the role of molecular biomarkers in trials on recurrent glioblastoma treatment. The database ClinicalTrials.gov was used to identify not yet completed clinical trials on recurrent glioblastoma in adults. Recruiting studies were assessed to investigate the role of molecular criteria, which were retrieved as detailed as possible. Primary outcome was molecular criteria used as selection criteria for study participation. Next to this, details on moment and method of testing, and targets and drugs studied, were collected. In 76% (181/237) of the included studies, molecular criteria were not included in the study design. Of the remaining 56 studies, at least one specific genomic alteration as selection criterium for study participation was required in 33 (59%) studies. Alterations in EGFR, CDKN2A/B or C, CDK4/6, and RB were most frequently investigated, as were the corresponding drugs abemaciclib and ribociclib. Of the immunotherapies, CAR-T therapies were the most frequently studied therapies. Previously, genomics studies have revealed the presence of potentially actionable alterations in glioblastoma. Our study shows that the potential efficacy of targeted treatment is currently not translated into genome-driven trials in patients with recurrent glioblastoma. An intensification of genome-driven trials might help in providing evidence for (in)efficacy of targeted treatments.</p
Canonical Transformations and Path Integral Measures
This paper is a generalization of previous work on the use of classical
canonical transformations to evaluate Hamiltonian path integrals for quantum
mechanical systems. Relevant aspects of the Hamiltonian path integral and its
measure are discussed and used to show that the quantum mechanical version of
the classical transformation does not leave the measure of the path integral
invariant, instead inducing an anomaly. The relation to operator techniques and
ordering problems is discussed, and special attention is paid to incorporation
of the initial and final states of the transition element into the boundary
conditions of the problem. Classical canonical transformations are developed to
render an arbitrary power potential cyclic. The resulting Hamiltonian is
analyzed as a quantum system to show its relation to known quantum mechanical
results. A perturbative argument is used to suppress ordering related terms in
the transformed Hamiltonian in the event that the classical canonical
transformation leads to a nonquadratic cyclic Hamiltonian. The associated
anomalies are analyzed to yield general methods to evaluate the path integral's
prefactor for such systems. The methods are applied to several systems,
including linear and quadratic potentials, the velocity-dependent potential,
and the time-dependent harmonic oscillator.Comment: 28 pages, LaTe
Comment on "Magnetoviscosity and relaxation in ferrofluids"
It is shown and discussed how the conventional system of hydrodynamic
equations for ferrofluids was derived. The set consists of the equation of
fluid motion, the Maxwell equations, and the magnetization equation. The latter
was recently revised by Felderhof [Phys. Rev. E, v.62, p.3848 (2000)]. His
phenomenological magnetization equation looks rather like corresponding
Shliomis' equation, but leads to wrong consequences for the dependence of
ferrofluid viscosity and magnetization relaxation time on magnetic field.Comment: 6 pages, 1 figure, Submitted to Phys. Rev.
Black Hole Dynamics From Atmospheric Science
In this note, we derive (to third order in derivatives of the fluid velocity)
a 2+1 dimensional theory of fluid dynamics that governs the evolution of
generic long-wavelength perturbations of a black brane or large black hole in
four-dimensional gravity with negative cosmological constant, applying a
systematic procedure developed recently by Bhattacharyya, Hubeny, Minwalla, and
Rangamani. In the regime of validity of the fluid-dynamical description, the
black-brane evolution will generically correspond to a turbulent flow.
Turbulence in 2+1 dimensions has been well studied analytically, numerically,
experimentally, and observationally as it provides a first approximation to the
large scale dynamics of planetary atmospheres. These studies reveal dramatic
differences between fluid flows in 2+1 and 3+1 dimensions, suggesting that the
dynamics of perturbed four and five dimensional large AdS black holes may be
qualitatively different. However, further investigation is required to
understand whether these qualitative differences exist in the regime of fluid
dynamics relevant to black hole dynamics.Comment: 16 pages, LaTeX, v2: caveat regarding relativistic vs
non-relativistic fluids added v3: typos correcte
Optimal trapping wavelengths of Cs molecules in an optical lattice
The present paper aims at finding optimal parameters for trapping of Cs
molecules in optical lattices, with the perspective of creating a quantum
degenerate gas of ground-state molecules. We have calculated dynamic
polarizabilities of Cs molecules subject to an oscillating electric field,
using accurate potential curves and electronic transition dipole moments. We
show that for some particular wavelengths of the optical lattice, called "magic
wavelengths", the polarizability of the ground-state molecules is equal to the
one of a Feshbach molecule. As the creation of the sample of ground-state
molecules relies on an adiabatic population transfer from weakly-bound
molecules created on a Feshbach resonance, such a coincidence ensures that both
the initial and final states are favorably trapped by the lattice light,
allowing optimized transfer in agreement with the experimental observation
Noise-free scattering of the quantized electromagnetic field from a dispersive linear dielectric
We study the scattering of the quantized electromagnetic field from a linear,
dispersive dielectric using the scattering formalism for quantum fields. The
medium is modeled as a collection of harmonic oscillators with a number of
distinct resonance frequencies. This model corresponds to the Sellmeir
expansion, which is widely used to describe experimental data for real
dispersive media. The integral equation for the interpolating field in terms of
the in field is solved and the solution used to find the out field. The
relation between the in and out creation and annihilation operators is found
which allows one to calculate the S-matrix for this system. In this model, we
find that there are absorption bands, but the input-output relations are
completely unitary. No additional quantum noise terms are required.Comment: Revtex, submitted to Physical Review
Nuclear shadowing in deep inelastic scattering on nuclei: leading twist versus eikonal approaches
We use several diverse parameterizations of diffractive parton distributions,
extracted in leading twist QCD analyses of the HERA diffractive deep inelastic
scattering (DIS) data, to make predictions for leading twist nuclear shadowing
of nuclear quark and gluon distributions in DIS on nuclei. We find that the
HERA diffractive data are sufficiently precise to allow us to predict large
nuclear shadowing for gluons and quarks, unambiguously. We performed detailed
studies of nuclear shadowing for up and charm sea quarks and gluons within
several scenarios of shadowing and diffractive slopes, as well as at central
impact parameters. We compare these leading twist results with those obtained
from the eikonal approach to nuclear shadowing (which is based on a very
different space-time picture) and observe sharply contrasting predictions for
the size and Q^2-dependence of nuclear shadowing. The most striking differences
arise for the interaction of small dipoles with nuclei, in particular for the
longitudinal structure function F_{L}^{A}.Comment: 43 pages, 16 figures, requires JHEP style fil
Scaling analysis of electron transport through metal-semiconducting carbon nanotube interfaces: Evolution from the molecular limit to the bulk limit
We present a scaling analysis of electronic and transport properties of
metal-semiconducting carbon nanotube interfaces as a function of the nanotube
length within the coherent transport regime, which takes fully into account
atomic-scale electronic structure and three-dimensional electrostatics of the
metal-nanotube interface using a real-space Green's function based
self-consistent tight-binding theory. As the first example, we examine devices
formed by attaching finite-size single-wall carbon nanotubes (SWNT) to both
high- and low- work function metallic electrodes through the dangling bonds at
the end. We analyze the nature of Schottky barrier formation at the
metal-nanotube interface by examining the electrostatics, the band lineup and
the conductance of the metal-SWNT molecule-metal junction as a function of the
SWNT molecule length and metal-SWNT coupling strength. We show that the
confined cylindrical geometry and the atomistic nature of electronic processes
across the metal-SWNT interface leads to a different physical picture of band
alignment from that of the planar metal-semiconductor interface. We analyze the
temperature and length dependence of the conductance of the SWNT junctions,
which shows a transition from tunneling- to thermal activation-dominated
transport with increasing nanotube length. The temperature dependence of the
conductance is much weaker than that of the planar metal-semiconductor
interface due to the finite number of conduction channels within the SWNT
junctions. We find that the current-voltage characteristics of the metal-SWNT
molecule-metal junctions are sensitive to models of the potential response to
the applied source/drain bias voltages.Comment: Minor revision to appear in Phys. Rev. B. Color figures available in
the online PRB version or upon request to: [email protected]
- …