35 research outputs found

    Backward Elastic p3He Scattering at Energies 1 - 2 GeV

    Get PDF
    The two-body transfer amplitude for the rearrangement process i+(jkl) - j+(ikl) is constructed on the basis of technique of 4-dimensional covariant nonrelativistic graphs. The developed formalism is applied to describing backward elastic p3Hep^3He scattering in the energy range 0.5 - 1.7 GeV. Numerical calculations performed using the 5- channel wave function of the 3He^3He nucleus show that the transfer of a noninteracting np- pair dominates and explains satisfactorily the energy and angular dependence of the differential cross section at energies 0.9 - 1.7GeV.Aweaksensitivitytohighmomentumcomponentsofthe GeV. A weak sensitivity to high momentum components of the ~^3He$ wave function in spite of large momentum transfer as well as a very important role of rescatterings in the initial and final states are established.Comment: 7 pages, Latex, 3 Postscript figure

    Indirect techniques in nuclear astrophysics. Asymptotic Normalization Coefficient and Trojan Horse

    Full text link
    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reactions down to astrophysically relevant energies. We explain why there is no Coulomb barrier in the sub-process amplitudes extracted from the TH reaction. The expressions for the TH amplitude for direct and resonant cases are presented.Comment: Invited talk on the Conference "Nuclear Physics in Astrophysics II", Debrecen, Hungary, 16-20 May, 200

    3^3He Structure and Mechanisms of p3p^3He Backward Elastic Scattering

    Get PDF
    The mechanism of p3p^3He backward elastic scattering is studied. It is found that the triangle diagrams with the subprocesses pd3pd\to ^3Heπ0 \pi^0, pd3pd^*\to ^3Heπ0 \pi^0 and p(pp)3p(pp)\to^3Heπ+ \pi^+, where dd^* and pppp denote the singlet deuteron and diproton pair in the 1S0^1S_0 state, respectively, dominate in the cross section at 0.3-0.8 GeV, and their contribution is comparable with that for a sequential transfer of a npnp pair at 1-1.5 GeV. The contribution of the d+ppd^*+pp, estimated on the basis of the spectator mechanism of the p(NN)3p(NN)\to ^3Heπ \pi reaction, increases the p3p^3He3\to ^3Hep p cross section by one order of magnitude as compared to the contribution of the deuteron alone. Effects of the initial and final states interaction are taken into account.Comment: 17 pages, Latex, 4 postscript figures, expanded version, accepted by Physical Review

    Coronal Shock Waves, EUV waves, and their Relation to CMEs. II. Modeling MHD Shock Wave Propagation Along the Solar Surface, Using Nonlinear Geometrical Acoustics

    Full text link
    We model the propagation of a coronal shock wave, using nonlinear geometrical acoustics. The method is based on the Wentzel-Kramers-Brillouin (WKB) approach and takes into account the main properties of nonlinear waves: i) dependence of the wave front velocity on the wave amplitude, ii) nonlinear dissipation of the wave energy, and iii) progressive increase in the duration of solitary shock waves. We address the method in detail and present results of the modeling of the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as Moreton waves along the solar surface in the simplest solar corona model. The calculations reveal deceleration and lengthening of the waves. In contrast, waves considered in the linear approximation keep their length unchanged and slightly accelerate.Comment: 15 pages, 7 figures, accepted for publication in Solar Physic
    corecore