3 research outputs found
Morse theory of the moment map for representations of quivers
The results of this paper concern the Morse theory of the norm-square of the
moment map on the space of representations of a quiver. We show that the
gradient flow of this function converges, and that the Morse stratification
induced by the gradient flow co-incides with the Harder-Narasimhan
stratification from algebraic geometry. Moreover, the limit of the gradient
flow is isomorphic to the graded object of the
Harder-Narasimhan-Jordan-H\"older filtration associated to the initial
conditions for the flow. With a view towards applications to Nakajima quiver
varieties we construct explicit local co-ordinates around the Morse strata and
(under a technical hypothesis on the stability parameter) describe the negative
normal space to the critical sets. Finally, we observe that the usual Kirwan
surjectivity theorems in rational cohomology and integral K-theory carry over
to this non-compact setting, and that these theorems generalize to certain
equivariant contexts.Comment: 48 pages, small revisions from previous version based on referee's
comments. To appear in Geometriae Dedicat