8 research outputs found

    Domain-size control by global feedback in bistable systems

    Full text link
    We study domain structures in bistable systems such as the Ginzburg-Landau equation. The size of domains can be controlled by a global negative feedback. The domain-size control is applied for a localized spiral pattern

    Stable three-dimensional spatiotemporal solitons in a two-dimensional phototnic lattice

    No full text
    We investigate the existence and stability of three-dimensional spatiotemporal solitons in self-focusing cubic Kerr-type optical media with an imprinted two-dimensional harmonic transverse modulation of the refractive index. We demonstrate that two-dimensional photonic Kerr-type nonlinear lattices can support stable one-parameter families of three-dimensional spatiotemporal solitons provided that their energy is within a certain interval and the strength of the lattice potential, which is proportional to the refractive index modulation depth, is above a certain threshold value.Peer ReviewedPostprint (published version

    Robust soliton clusters in media with competing cubic and quintic nonlinearities

    No full text
    Systematic results are reported for dynamics of circular patterns (“necklaces”), composed of fundamental solitons and carrying orbital angular momentum, in the two-dimensional model, which describes the propagation of light beams in bulk media combining self-focusing cubic and self-defocusing quintic nonlinearities. Semianalytical predictions for the existence of quasistable necklace structures are obtained on the basis of an effective interaction potential. Then, direct simulations are run. In the case when the initial pattern is far from an equilibrium size predicted by the potential, it cannot maintain its shape. However, a necklace with the initial shape close to the predicted equilibrium survives very long evolution, featuring persistent oscillations. The quasistable evolution is not essentially disturbed by a large noise component added to the initial configuration. Basic conclusions concerning the necklace dynamics in this model are qualitatively the same as in a recently studied one which combines quadratic and self-defocusing cubic nonlinearities. Thus, we infer that a combination of competing self-focusing and self-defocusing nonlinearities enhances the robustness not only of vortex solitons but also of vorticity-carrying necklace patterns.Peer Reviewe

    Robust soliton clusters in media with competing cubic and quintic nonlinearities

    No full text
    Systematic results are reported for dynamics of circular patterns (“necklaces”), composed of fundamental solitons and carrying orbital angular momentum, in the two-dimensional model, which describes the propagation of light beams in bulk media combining self-focusing cubic and self-defocusing quintic nonlinearities. Semianalytical predictions for the existence of quasistable necklace structures are obtained on the basis of an effective interaction potential. Then, direct simulations are run. In the case when the initial pattern is far from an equilibrium size predicted by the potential, it cannot maintain its shape. However, a necklace with the initial shape close to the predicted equilibrium survives very long evolution, featuring persistent oscillations. The quasistable evolution is not essentially disturbed by a large noise component added to the initial configuration. Basic conclusions concerning the necklace dynamics in this model are qualitatively the same as in a recently studied one which combines quadratic and self-defocusing cubic nonlinearities. Thus, we infer that a combination of competing self-focusing and self-defocusing nonlinearities enhances the robustness not only of vortex solitons but also of vorticity-carrying necklace patterns.Peer Reviewe

    Stable three-dimensional spatiotemporal solitons in a two-dimensional phototnic lattice

    No full text
    We investigate the existence and stability of three-dimensional spatiotemporal solitons in self-focusing cubic Kerr-type optical media with an imprinted two-dimensional harmonic transverse modulation of the refractive index. We demonstrate that two-dimensional photonic Kerr-type nonlinear lattices can support stable one-parameter families of three-dimensional spatiotemporal solitons provided that their energy is within a certain interval and the strength of the lattice potential, which is proportional to the refractive index modulation depth, is above a certain threshold value.Peer Reviewe

    Stable spinning optical solitons in three dimensions

    No full text
    We introduce spatiotemporal spinning solitons (vortex tori) of the three-dimensional nonlinear Schrödinger equation with focusing cubic and defocusing quintic nonlinearities. The first ever found completely stable spatiotemporal vortex solitons are demonstrated. A general conclusion is that stable spinning solitons are possible as a result of competition between focusing and defocusing nonlinearities.Peer Reviewe
    corecore