8 research outputs found

    Transforming patterned defects into dynamic poly-regional topographies in liquid crystal oligomers

    Get PDF
    We create high-aspect-ratio dynamic poly-regional surface topographies in a coating of a main-chain liquid crystal oligomer network (LCON). The topographies form at the topological defects in the director pattern organized in an array which are controlled by photopatterning of the alignment layer. The defect regions are activated by heat and/or light irradiation to form reversible topographic structures. Intrinsically, the LCON is rubbery and sensitive to temperature changes, resulting in shape transformations. We further advanced such system to make it light-responsive by incorporating azobenzene moieties. Actuation reduces the molecular order of the LCON coating that remains firmly adhered to the substrate which gives directional shear stresses around the topological defects. The stresses relax by deforming the surfaces by forming elevations or indents, depending on the type of defects. The formed topographies exhibit various features, including two types of protrusions, ridges and valleys. These poly-regional structures exhibit a large modulation amplitude of close to 60%, which is 6 times larger than the ones formed in liquid crystal networks (LCNs). After cooling or by blue light irradiation, the topographies are erased to the initial flat surface. A finite element method (FEM) model is adopted to simulate structures of surface topographies. These dynamic surface topographies with multilevel textures and large amplitude expand the application range, from haptics, controlled cell growth, to intelligent surfaces with adjustable adhesion and tribology.</p

    Photopatterned Designer Disclination Networks in Nematic Liquid Crystals

    No full text
    Linear defect-disclinations are of fundamental interest in understanding complex structures explored by soft matter physics, elementary particles physics, cosmology, and various branches of mathematics. These defects are also of practical importance in materials applications, such as programmable origami, directed colloidal assembly, and command of active matter. Here an effective engineering approach is demonstrated to pattern molecular orientations at two flat confining surfaces that produce complex yet designable networks of singular disclinations of strength 1/2. Depending on the predesigned director patterns at the bounding plates, the produced disclinations are either surface-anchored, connecting desired sites at the boundaries, or freely suspended in bulk, forming ordered arrays of polygons and wavy lines. The capability is shown to control the radius of curvature, size, and shape of disclinations by varying uniform alignment orientation on one of these confining plates. The capabilities to precisely design and create highly complex 3D disclination networks promise intriguing applications in stimuli-responsive reconfigurable materials, directed self-assembly of molecules, micro- and nanoparticles, and transport and sorting in microfluidic applications

    Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39

    No full text
    Schlüter A, Patschkowski T, Quandt J, et al. Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant Microbe Interact. 1997;10(5):605-616.DNA corresponding to two copies of the Rhizobium leguminosarum bv. viciae strain VF39 fixNOQP operon coding for a putative symbiotic terminal oxidase of the heme-copper oxidase superfamily was cloned, sequenced, and genetically analyzed. The first copy is located upstream of the fixK-fixL region on plasmid pRleVF39c, whereas the second copy resides on the nodulation plasmid pRleVF39d. Insertional mutagenesis with antibiotic resistance cassettes confirmed that both copies were functional, and that the presence of at least one functional copy was required for nitrogen fixation. The deduced amino acid sequences of both fixN genes are highly similar (95% identity) and contain 15 putative transmembrane helices, suggesting that the fixN gene products are integral membrane proteins. Furthermore, six histidine residues predicted to be the ligands for a heme-copper binuclear center and a low-spin heme b are conserved in both R. leguminosarum fixN proteins. The deduced fixO and fixP gene products show characteristics of membrane-bound monoheme and diheme cytochrome c, respectively. Upstream of both fixN copies putative Fnr-consensus binding sites (anaeroboxes) were found that differ in certain base pairs. As R. leguminosarum VF39 possesses two members of the Fnr/FixK regulator family, FnrN and FixK, the possible differential regulation of both fixN copies was analyzed with fixN-gusA reporter gene fusions. Both fixN fusions were induced under free-living microaerobic conditions and in the symbiotic zone of the root nodule. Induction of the expression of fixNc and fixNd was highly reduced in a fnrN mutant background and in a fixL mutant background, whereas fixK was only marginally involved in fixN regulation. Residual expression of fixN was observed in an fnrN/fixK double mutant
    corecore