14 research outputs found

    Foliar uptake of water by wet leaves of Sloanea woollsii, an Australian subtropical rainforest tree

    No full text
    At leaf water potentials (ψ) of around -2.5 MPa, detached leaves of Sloanea woollsii F.Muell., an Australian subtropical rainforest tree, were able to absorb small amounts of water vapour from a saturated atmosphere, but absorbed considerably more liquid water if their surfaces remained wet. When leaves attached to small branches exhibiting a ψ of -2 MPa were sprayed with water and maintained in a saturated atmosphere, leaf ψ returned to saturation values within about 6 h. In a further experiment, a ψ of -2 MPa was imposed on detached, forked branches. Branches were then exposed to a saturated atmosphere and leaves on one half of the fork were kept wet whilst the rest remained dry. Leaf ψ was measured periodically for both dry and wet leaves and in both cases was found to increase with time. This indicated that leaf surface water was imbibed by wet leaves and transported into the branch resulting in alleviation of low water potentials in the dry leaves. In the submontane rainforests in which S. woollsii occurs, extended periods with little or no rainfall occur regularly. Throughout the year, foliage is wet by fog or dew alone for about 25% of the time. It is suggested that the presence of leaf surface water during rainless periods when leaf Psi is low may be important for the survival of S. woollsii. The actual mechanism of foliar absorption is uncertain, but is likely to be direct imbibition through the cuticle

    Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia

    No full text

    Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems

    No full text
    © 2019 The Authors Mangrove organic carbon is primarily stored in soils, which contain more than two-thirds of total mangrove ecosystem carbon stocks. Despite increasing recognition of the critical role of mangrove ecosystems for climate change mitigation, there is limited understanding of soil organic carbon sequestration mechanisms in undisturbed low-latitude mangroves, specifically on organic carbon burial rates and sources. This study assessed soil organic carbon burial rates, sources and stocks across an undisturbed coastal mudflat and mangrove hydrogeomorphological catena (fringe mangrove and interior mangrove) in Bintuni Bay, West Papua Province, Indonesia. 210Pb radionuclide sediment dating, and mixing model of natural stable isotope signatures (δ 13C and δ15N) and C/N ratio were used to estimate organic carbon burial rates and to quantify proportions of allochthonous (i.e., upland terrestrial forest) and autochthonous (i.e., on-site mangrove forest) organic carbon in the top 50 cm of the soil. Burial rates were in the range of 0.21–1.19 Mg C ha−1 yr−1. Compared to the fringe mangroves, organic carbon burial rates in interior mangroves were almost twice as high. Primary productivity of C3 upland forest vegetation and mangroves induced soil organic carbon burial in interior mangroves and this was consistent with the formation of the largest organic carbon stocks (179 ± 82 Mg C ha−1). By contrast, organic carbon stored in the fringe mangrove (68 ± 11 Mg C ha−1) and mudflat (62 ± 10 Mg C ha−1) soils mainly originated from upland forests (allochthonous origin). These findings clearly indicate that carbon sequestered and cycling in mangrove and terrestrial forest ecosystems are closely linked, and at least a part of carbon losses (e.g., erosion) from terrestrial forests is buried in mangrove ecosystems

    Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems

    No full text
    Mangrove organic carbon is primarily stored in soils, which contain more than two-thirds of total mangrove ecosystem carbon stocks. Despite increasing recognition of the critical role of mangrove ecosystems for climate change mitigation, there is limited understanding of soil organic carbon sequestration mechanisms in undisturbed low-latitude mangroves, specifically on organic carbon burial rates and sources. This study assessed soil organic carbon burial rates, sources and stocks across an undisturbed coastal mudflat and mangrove hydrogeomorphological catena (fringe mangrove and interior mangrove) in Bintuni Bay, West Papua Province, Indonesia. 210Pb radionuclide sediment dating, and mixing model of natural stable isotope signatures (δ 13C and δ15N) and C/N ratio were used to estimate organic carbon burial rates and to quantify proportions of allochthonous (i.e., upland terrestrial forest) and autochthonous (i.e., on-site mangrove forest) organic carbon in the top 50 cm of the soil. Burial rates were in the range of 0.21–1.19 Mg C ha−1 yr−1. Compared to the fringe mangroves, organic carbon burial rates in interior mangroves were almost twice as high. Primary productivity of C3 upland forest vegetation and mangroves induced soil organic carbon burial in interior mangroves and this was consistent with the formation of the largest organic carbon stocks (179 ± 82 Mg C ha−1). By contrast, organic carbon stored in the fringe mangrove (68 ± 11 Mg C ha−1) and mudflat (62 ± 10 Mg C ha−1) soils mainly originated from upland forests (allochthonous origin). These findings clearly indicate that carbon sequestered and cycling in mangrove and terrestrial forest ecosystems are closely linked, and at least a part of carbon losses (e.g., erosion) from terrestrial forests is buried in mangrove ecosystems. © 2019 The Author

    The comparative role of key environmental factors in determining savanna productivity and carbon fluxes: a review, with special reference to northern Australia

    Get PDF
    Terrestrial ecosystems are highly responsive to their local environments and, as such, the rate of carbon uptake both in shorter and longer timescales and different spatial scales depends on local environmental drivers. For savannas, the key environmental drivers controlling vegetation productivity are water and nutrient availability, vapour pressure deficit (VPD), solar radiation and fire. Changes in these environmental factors can modify the carbon balance of these ecosystems. Therefore, understanding the environmental drivers responsible for the patterns (temporal and spatial) and processes (photosynthesis and respiration) has become a central goal in terrestrial carbon cycle studies. Here we have reviewed the various environmental controls on the spatial and temporal patterns on savanna carbon fluxes in northern Australia. Such studies are critical in predicting the impacts of future climate change on savanna productivity and carbon storage

    Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network

    No full text
    First published: 22 March 2022In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.Jason Beringer ... Georgia R. Koerber ... Wayne S. Meyer ... et. a
    corecore