16 research outputs found

    ВоздСйствиС цисплатина Π½Π° ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΡ‚Π΅Π½Ρ‚Π½Ρ‹Π΅ ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ½Ρ‹Π΅ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ кислорода

    Get PDF
    Objective: To evaluate the damaging effects of cisplatin on MMSCs from adipose tissue in a phase of active proliferation and the state of the monolayer, which was exposed at standard (20%) and reduced to 1% and 5% level of oxygen.Methods: The incubation MMSC with cisplatin was performed on cultures of 2 passage in a state in monolayer and cultures in the active growth phase. Profile surface markers of MMSC determined by flow cytometry. MMSCs viability after incubation with cisplatin was detected by the number of apoptotic and necrotic cells using ANNEXIN V-FITC - PI Kit (Immunotech, France). Standard culture conditions (~ 20% O2) created in a CO2 incubator (Sanyo, Japan), 5% O2 created using multigas incubator (Sanyo, Japan), 1% O2 - using an airtight chamber (Stemcell Technologies, USA).Results: Incubation of monolayer MMSC with cisplatin at a concentration of 10 ug/ml for 72 hours leads to death of half of the cells in culture under 20% O2, 5% O2 and 1% O2. Cisplatin increased the fracture of PI+-cell, and PI+/Ann+-cells under all culture conditions. The short-term exposure with cisplatin (24 and 48 hours) did not cause the damaging effect. Effects of cisplatin on the MMSC in the growth phase for 48 hours led to accumulation of Ann+-cells and PI+/Ann +-cells under all culture conditions. However least damaging effect of cisplatin was observed in culture under hypoxic conditions (1% O2).Conclusion: These data suggest that monolayer MMSCs are dying primarily through necrosis, whereas MMSC in the growth phase in response to cisplatin treatment are dying by apoptosis, regardless the oxygen tension.ЦСль исслСдования: ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π°ΡŽΡ‰Π΅Π΅ воздСйствиС цисплатина Π½Π° ММБК ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, находящиСся Π² Ρ„Π°Π·Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π² состоянии монослоя, ΠΏΡ€ΠΈ стандартном (20%) ΠΈ сниТСнном Π΄ΠΎ 1% ΠΈ 5% ΡƒΡ€ΠΎΠ²Π½Π΅ кислорода Π² срСдС ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠžΡ†Π΅Π½ΠΊΡƒ влияния цисплатина Π½Π° ММБК ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Ρ… 2 пассаТа Π² состоянии монослоя ΠΈ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Ρ… Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ„Π°Π·Π΅ роста. ΠŸΡ€ΠΎΡ„ΠΈΠ»ΡŒ повСрхностных ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ММБК опрСдСляли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π–ΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ММБК послС ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ с цисплатином ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ количСству апоптотичСских ΠΈ нСкротичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π°Π±ΠΎΡ€Π° ANNEXIN V-FITC – PI (Immunotech, Ѐранция). Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹Π΅ условия ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ (~20% О2) создавали Π² БО2-ΠΈΠ½ΠΊΡƒΠ±Π°Ρ‚ΠΎΡ€Π΅ (Sanyo, Япония), 5% О2 создавали ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ³Π°Π·ΠΎΠ²Ρ‹ΠΉ ΠΈΠ½ΠΊΡƒΠ±Π°Ρ‚ΠΎΡ€ (Sanyo, Япония), 1% О2 – ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Π΅Ρ€ΠΌΠ΅Ρ‚ΠΈΡ‡Π½ΡƒΡŽ ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ (Stemcell Technologies, БША).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: Π˜Π½ΠΊΡƒΠ±Π°Ρ†ΠΈΡ ММБК Π² состоянии монослоя с цисплатином Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 10 ΠΌΠΊΠ³/ΠΌΠ» Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 72 часов Π²Ρ‹Π·Ρ‹Π²Π°Π»Π° гибСль практичСски ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ 20% О2, Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈ 5% ΠΈ 1% О2 Π² срСдС. Π’ΠΎ всСх условиях ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»Π°ΡΡŒ доля PI+-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ PI+/Ann+-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π‘ΠΎΠ»Π΅Π΅ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ экспозиции с цисплатином (24 ΠΈ 48 часов) Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π»ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π°ΡŽΡ‰Π΅Π³ΠΎ эффСкта. ВоздСйствиС цисплатина Π½Π° ММБК Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ„Π°Π·Π΅ роста Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 48 часов ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ количСства Ann+-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ PI+/Ann+-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠŸΡ€ΠΈ этом наимСньшСС ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π°ΡŽΡ‰Π΅Π΅ воздСйствиС цисплатин ΠΎΠΊΠ°Π·Π°Π» Π½Π° ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π² условиях гипоксии (1% О2).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‡Ρ‚ΠΎ ММБК Π² состоянии монослоя ΠΏΠΎΠ³ΠΈΠ±Π°ΡŽΡ‚ прСимущСствСнно ΠΏΡƒΡ‚Π΅ΠΌ Π½Π΅ΠΊΡ€ΠΎΠ·Π°, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ для ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ ММБК Π² Ρ„Π°Π·Π΅ роста Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° воздСйствиС Π±Ρ‹Π»ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΠΎΠ³ΠΈΠ±Π°ΡŽΡ‰ΠΈΡ… ΠΏΡƒΡ‚Π΅ΠΌ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°, Π²Π½Π΅ зависимости ΠΎΡ‚ уровня содСрТания кислорода Π² срСдС

    Osteogenic Potential Reduction in Mesenchymal Stem Cells under Prolonged Simulated Microgravity

    No full text
    Increasing the duration of orbital space flights up to 6–12 months and planning interplanetary missions actualizes the need for a better understanding of the mechanisms of osteopenia caused by microgravity. Investigation of mesenchymal stem cells (MSCs) that support the tissue homeostasis under microgravity conditions allows a deeper insight into the processes underlying bone loss. The purpose of this study was to investigate the osteogenic potential of MSCs under prolonged simulated microgravity by clinorotation. Using the method of mineralized matrix detection, it has been found that MSCs osteogenic potential decreased after long-term clinorotation. The investigation of major osteogenic gene expression has showed decreased transΒ­criptional activity in RUNX2, ALPL-1, Col-1, but increased expression of PPARΞ³. One of the reasons for the decreased osteogenic potential of MSCs may be an increased level of reactive oxygen species (ROS) after 30 days of clinorotation. ROS may affect cellular signaling cascades, such as Wnt, Hedgehog and FOXO pathways, thereby leading to a shift of the differentiation potential to adipogenesis

    BONE LOSS RECOVERY IN MICE FOLLOWING MICROGRAVITY WITH CONCURRENT BONE-COMPARTMENT-SPECIFIC OSTEOCYTE CHARACTERISTICS

    No full text
    Space missions provide the opportunity to investigate the influence of gravity on the dynamic remodelling processes in bone. Mice were examined following space flight and subsequent recovery to determine the effects on bone compartment-specific microstructure and composition. The resulting bone loss following microgravity recovered only in trabecular bone, while in cortical bone the tissue mineral density was restored after only one week on Earth. Detection of TRAP-positive bone surface cells in the trabecular compartment indicated increased resorption following space flight. In cortical bone, a persistent reduced viability of osteocytes suggested an impaired sensitivity to mechanical stresses. A compartment-dependent structural recovery from microgravity-induced bone loss was shown, with a direct osteocytic contribution to persistent low bone volume in the cortical region even after a recovery period. Trabecular recovery was not accompanied by changes in osteocyte characteristics. These post-space-flight findings will contribute to the understanding of compositional changes that compromise bone quality caused by unloading, immobilisation, or disuse
    corecore