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1. Introduction 

Oxygen balance is a corner element of tissue physiology. The damaging effects of oxygen 
deprivation have been  under consideration over at least 100 years. Recently, interest to 
hypoxia and practically complete absence of oxygen referred to as anoxia has been 
rekindled  in context of the great progress made in the studies of stem/progenitor cell  
function in organism. The hallmark of stem cells is ability to self-renew and maintain 
multipotency. This ability depends on the balance of complex signals in their 
microenvironment. One of the most important findings is that   oxygen represents a crucial 
component determining stem cells homeostasis within their native tissue niche. The stem 
cell niche has come to refer to a defined anatomical compartment that includes cellular and 
acellular components that integrate both systemic and local cues to regulate the stem cells 
biology [Jones and Wagers, 2008; Li and Xie, 2005; Scadden, 2006; Yin and Li, 2006; 
Buravkova & Andreeva, 2010]. The first specialized tissue niche was described for 
hematopoietic cells in bone marrow [Schofield, 1978]. Cells, blood vessels, matrix 
glycoproteins, and the three-dimensional space formed the architecture of a highly 
specialized microenvironment for stem cells [Scadden, 2006]. Oxygen measurements in 
tissues known to harbor stem cells revealed low level of oxygen, and raised the question of 
whether such an environment was necessary for the niche to maintain stem cells [Braun et 
al., 2001; Cipolleschi et al., 1993; Erecinska and Silver, 2001]. Recent evidence has broadened 
the spectrum of stem cells influenced by limited oxygen supply including cancer stem cells 
and induced pluripotent stem cells [Brahimi-Horn & Pouysse'gur, 2007]. Low oxygen 
tension maintains the undifferentiated state of embryonic, hematopoietic, mesenchymal, 
and neural stem cell phenotypes, and affects proliferation and cell-fate commitment 
[Mohyeldin et al., 2010].  

Multipotent mesenchymal stem/stromal cells (MMSCs) arouse interest of cell biologists 
because of high proliferating activity and multilineage differentiion capacity. These cells are 
also shown to be immunoprivilege and to possess immunosuppressive features. The  MMSC 
properties taken together make these cells a very attractive tool for cell therapy and 
regenerative medicine. By and large, manifestation of the MMSC properties is strictly 
dependent on oxygen concentration in native milieu. Moreover, the best realization of the 
regenerative potential is closely associated with low or very low oxygen level in the area of 
tissue damage.  
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The chapter highlights the recent progress in evaluation of the pivotal role of low oxygen in 
MMSC milieu and how it  uniquely modulates the MMSC properties.  

2. MMSCs and microenvironmental requirements: the role of oxygen 

MMSCs (a rare population of non-hematopoietic stem/progenitor cells) are the subject of 

increasing scientific interest due to the key role they play  in physiological renewal and 

repair. For a long time there was only one special tissue known as a definite source for 

renewal and substitution of cells in mammals, humans in particular. It was bone marrow 

capable  to produce new mature blood cells from undifferentiated hematopoietic precursors. 

Marrow stroma contains many cell elements including endothelial cells of vessels, reticular 

cells, fibroblasts, adipocytes, stromal cells, and macrophages. Among the multiple stromal 

cells there is  a minor population of MMSCs that localizes assumingly  in perivascular 

regions of the bone marrow [Fridenshtein et al., 1976]. According to the modern concept, 

this population has the capacity to differentiate into cells of mesenchymal lineage 

(osteoblasts, chondroblasts, adipocytes and some other types of cells) [Kolf et al., 2007; 

Losito et al., 2009; Mohyeldin et al., 2010].  

The direct evidence of stromal progenitor cells entity in vivo was not available due to the 

lack of a single definitive marker; therefore, demonstration of their existence has relied 

primarily on retrospective in vitro assays. To date, identification and characterization of 

bone marrow MMSCs from various animal species and humans have been described in 

numerous papers. It was recognized that the main phenotypic MMSC features should 

satisfy the following three basic criteria: adhesion to plastic, extended self-maintenance in 

culture, and the  capacity  to differentiate into bone, cartilage, adipose and hematopoiesis-

inducing stroma during transplantation in vivo or upon certain inductive stimuli in vitro 

[Caplan, 2007; Kolf et al., 2007].  

As it has been already mentioned, firstly MMSCs were described in bone marrow. 

Subsequently cells with characteristics similar to MMSCs were isolated from other tissue 

sources, including trabecular bone, adipose tissue, synovium, skeletal muscle, lung, 

deciduous teeth, and human umbilical cord perivascular cells derived from the Wharton’s 

Jelly, peripheral blood, dental pulp, periodontal ligament and etc. (Tabl. 1) [for refs. see also 

Kolf et al., 2007; Augello et al., 2010].  

These findings reveal that MMSCs are diversely distributed in vivo and, as a result, may 

occupy a ubiquitous stem cell niche. There is a hypothesis that these cells are the common 

source of multipotent cells in adult organism migrating constantly in various mesenchymal 

tissues and providing their maintenance, renewal and regeneration. 

The stem/progenitor cell microenvironment constists of specific molecular, cellular, and 

physiological components and is subject to physical and mechanical stimuli. Although stem 

cells can reside in markedly different locations and have distinctly different developmental 

paths, low oxygen tension (termed hypoxia or, in case of extremely low O2, anoxia) seems to 

be a common in vivo feature shared by many types of adult stem cells. Indeed, there is 

increasing evidence that presence/absence of oxygen is a powerful tool that regulates stem 

cell proliferation and differentiation [Ma et al., 2009].  
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Tissue source Representative References 

 
Bone marrow 

Bruder et al., 1998; Pittenger et al., 1999; Makino et al., 1999; 
Majumdar et al., 2000; Bianco et al., 2001; Shake et al., 2002; Shi  
& Grontos, 2003; Lee et al., 2004; Wagner et al., 2005; Romanov 
et al., 2006; Fehrer et al., 2007 

Adipose tissue Zuk et al., 2001, 2002; Lee et al., 2004; Rehman et al., 2004; 
Wagner et al., 2005; Romanov et al., 2006; Gimble et al., 2007; 
Schaffler et al., 2007; Buravkova et al., 2009; Madonna et al., 
2009 

Muscle Bosch et al., 2000; Black, 2001 

Umbilical cord blood Wagner et al., 2005; Caballero et al., 2010 

Peripheral blood Zvaifler et al., 2000 

Dermis Black, 2001 

Periosteum Caballero et al., 2010 

Dental pulp Shi  & Grontos, 2003 

Synovial membrane  Kurose et al., 2010 

Table 1. MMSC tissue sources in humans. 

The role of oxygen in maintaining of both self-renewal and committed status of 
hematopoietic cells has been described in detail [Ivanovic, 2009; Eliasson & Jonasson, 2010, 
Valtieri & Sorrenino, 2008]. In bone marrow, the hematopoietic compartments are bound by 
stromal elements [Kolf et al., 2007], mainly MMSCs, and such way that two cell types form 
an integral part of each other's niche. Although the importance of understanding the 
progenitor cell spatial distribution with respect to oxygen supply from blood vessel has long 
been recognized, a direct noninvasive in vivo measurement of spatial oxygen gradient in 
bone marrow has been a major technical hurdle. Early direct measurements revealed that 
bone marrow is generally hypoxic with O2 in some regions as low as ~1–2% [Cipolleschi et 
al., 1993] and even close to anoxia 0.1% O2 in the osteoblastic niche [Calvi et al., 2003]. 
Results from the recent in vivo studies provided a direct experimental evidence that long-
term repopulating HSCs in mouse reside in hypoxic environment [Parmar et al., 2007] and 
that hypoxia may in fact be an essential part of microenvironment maintaining cells in the 
undifferentiated state. On the other hand, hypoxia increases erythropoiesis – one of 
hematopoietic lineage, - by EPO or, maybe, low O2 [Vlaski et al., 2009]. 

Based on these data, one may assume that MMSC physiology as an integral part of HSCs 
niche is also governed mainly by hypoxic and even anoxic conditions. Unlike HSCs residing 
exactly in bone marrow, MMSCs localize in other perivascular tissue depots and, being 
involved in regenerative and reparative processes are faced with different oxygen 
conditions; therefore, they should possess a high degree of O2-mediated plasticity. 
Low/extremely low (hypoxia/anoxia) oxygen partial pressure in extracellular space may be 
physiologic or damaging in consequence of insufficient blood supply to impaired tissue. 
Low oxygen can modify drastically morphologic and functional cell properties, such as 
viability, proliferative status, immunophenotype, and differentiation. On the other hand, it 
is known that different cells have different tolerance to low oxygen [Csete, 2005; Ivanovic, 
2009]. MMSCs, a mixture of stem/progenitor cells that may come to be in different oxygen 
milieu in vivo, are an attractive experimental model to explore the intrinsic mechanisms of 
cell adaptation to oxygen limitation.  
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The major bulk of knowledge concerning mesenchymal stem/progenitors biology came 
from the in vitro studies. The high proliferative activity underlies the MMSC ability to self-
renew in culture for an extended period without a dramatic decline of the telomerase 
activity and change of karyotype [Bruder et al., 1997; Izadpanah et al., 2006], and to form an 
uniform layer of adhesive spindle-shaped cells with typical fibroblast-like morphology in 
vitro in the normalized conditions, i.e. low glucose content, absence of differentiation stimuli 
and appropriate seeding density [Pittenger et al., 1999]. The composition of the gaseous 
phase in cell culture technique is the most conservative parameter and exploring 
atmospheric O2 concentration. It should be taken into account that oxygen concentration is 
significantly lower in vivo. Arterial blood contains about 12% oxygen, and the mean tissue 
level of oxygen is about 3% with considerable local and regional variation. These are values 
for adult organs and tissues. Mean oxygen tension in embryonic tissue (where stem cells are 
enriched relative to adult tissues) is considerably less. Although many papers refer to low 
oxygen levels in embryos as “hypoxic,” they are actually “normoxic” for the time and place 
of development [Csete, 2005]. In the last decade it was demonstrated that low oxygen 
tension influences greatly biology of both embryonic and adult stem cell in vitro [Eliasson 
and Jonsson, 2010; Panchision, 2009; Silvan et al., 2009] improving the proliferative and 
migrating abilities and reducing differentiation and proapoptotic reaction of stem cells. 
These observations fueled a hypothesis that low oxygen tension could be critical, but not 
damaging to stem cells microenvironment.  

Nowadays, in vitro studies of the oxygen effect on MMSC functional properties are growing 

in number. The initial theory that the replicating stem cell microenvironment should 

provide sufficient oxygen supply to support tissue growth evolved to the understanding of 

a more complex signaling role of oxygen in regulation of stem cells migration, 

differentiation, and development [Ma et al., 2009]. Despite the claim that low and extremely 

low O2 may be more representative of the physiological conditions  for certain cell types 

than so-called “normoxia”, low  oxygen is traditionally called hypoxia in consistency with 

the conventional terminology.  

At the moment, there is wealth of data concerning low oxygen effects on the functional 
properties of MMSCs in vitro. It was demonstrated clearly that hypoxia of different severity 
induces proliferation in cultured MMSCs from various species. Thus, an increased 
proliferation rate was demonstrated for rat bone marrow MMSCs at 5% O2 [Lennon et al., 
2001; Buravkova & Anokhina, 2007,2008]. Also, proliferation of human bone marrow 
MMSCs was stimulated by  2% O2 [Grayson et al., 2006], 3% 02 [Fehrer et al., 2007; 
D’Ippolito et al., 2006], and 5% O2 [Zhambalova et al., 2010]. Accelerated cell growth was 
observed in pig bone marrow MMSC culture at 5% O2 [Bosch et al, 2006] and murine’s bone 
marrow MMSCs at 8% O2 [Ren et al., 2006]. Villarruel S.M. and coauthors [2008] estimated 
the human bone marrow MMSC colony-forming potential  at 1, 5, 10, and 20 % O2, and 
found that the number of CFU-F raised most at 5% O2. The data on MMSCs under low 
oxygen pressure are also discussed in detail in several review papers [Malda et al., 2007; Ma 
et al., 2009; Das et al., 2010].  

Under reduced oxygen pressure MMSCs also display angiogenic activity. At 1% O2,  
murine’s bone marrow MMSCs migrated  rapidly, formed a three-dimensional capillary-like 
structure in Matrigel, and synthesized more vascular endothelial growth factor (VEGF); 
matrix metalloproteinase (MMP)-2 mRNA expression and protein secretion were down 
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regulated, while those of membrane-type (MT)MMP-1 were strongly induced by hypoxia 
[Annabi et al., 2003]. The capillary-like structures were also demonstrated in hypoxic (5%) 
cultures of human marrow MMSCs [Zhambalova et al., 2010] and adipose tissue MMSCs 
[Grinakovskaya, personal communication].  

MMSCs are considered as a perspective tool for regenerative medicine and approaches to 
improve MMSCs quality are being developed rapidly. The preconditioning in low oxygen 
medium is one of the attractive ways. It was demonstrated that preconditioning of human 
marrow-derived MMSCs in 1%-3% oxygen activated the Akt-signaling pathway while 
maintaining cell viability and cell cycle rates, induced expression of cMet, the major receptor 
for hepatocyte growth factor (HGF), and enhanced cMet signaling. MMSCs cultured in 
hypoxic conditions increased migration rate. Preconditioned normoxic and hypoxic MMSCs 
equally improved revascularization after surgical hind limb ischemia; however, restoration 
of blood flow was observed significantly earlier in mice that had been injected with hypoxic 
preconditioned MMSCs [Rosova et al., 2008]. According to Hu et al. [2008],  subletally 
hypoxic close to anoxia (0.5%) preconditioning of murine bone marrow MMSCs increased 
expression of prosurvival and proangiogenic factors including hypoxia-inducible factor 1, 
angiopoietin-1, vascular endothelial growth factor and its receptor, Flk-1, erythropoietin, 
Bcl-2, and Bcl-xL. Caspase-3 activation in hypoxic MMSCs and populaltion of apoptotic cells 
were significantly lower compared with normoxic cells in vitro. Transplantation of hypoxic 
vs normoxic MMSCs after myocardial infarction resulted in an increase in angiogenesis, as 
well as enhanced morphologic and functional benefits of stem cell therapy [Hu et al., 2008]. 

The adipose tissue-derived MMSCs under low oxygen pressure are of special interest 
because of the considerable promise for regenerative medicine and cell therapy. Most of the 
data on MMSCs at low O2 were gathered using bone marrow MMSCs. Much less 
investigations have been concerned with the hypoxia effects on stromal cells derived from 
adipose tissue.  

In a few papers hypoxia has been shown to affect the differentiation potential of the adipose 

tissue-derived MMCSs. Wang et al. [2005] demonstrated  that human adipose MMSCs  in 

alginate beads did not display proliferative activity at 5% O2 in normal expansion medium; 

however in chondrogenic medium its growth rates was lower at 5%  in comparison with 

20% O2. Still,  under these conditions they exhibited enhanced chondrogenic differentiation 

markers including collagen II, glucosaminoglycan, and chondroitin-4-sulfate production 

[Wang et al., 2005]. The hypoxia effect on adipose tissue MMSCs is strongly dependent on 

the cultivation conditions. For this reason, there are conflicting data regarding chondrogenic 

gene expression during induction under hypoxic conditions [Khan et al., 2007; Betre et al., 

2006]. Adipose tissue MMSCs expanded in 20% O2 and transferred into a 2% O2 

environment failed to differentiate robustly to either adipogenic or osteogenic lineages as 

compared with adipose MMSCs differentiated in normal atmospheric conditions [Lee & 

Kemp, 2006].  

We have developed an experimental approach utilizing permanent expansion of adipose 

tissue derived MMSCs at a reduced oxygen tension [Buravkova et al., 2009]. In hypoxia (5% 

O2) MMSCs demonstrated enhanced growth exceeding that in normoxia (20% O2) in 2.9+0.2 

folds (p<0.05) [Buravkova et al., 2009]. The osteogenic differentiation capacity of MMSCs 

was significantly reduced in hypoxia vs normoxia [Grinakovskaya et al., 2009].  

www.intechopen.com



 
Anoxia 

 

66

After expansion at low oxygen (2%) adipose tissue derived MMSCs were able to enhance 
the wound-healing function. Conditioning medium of hypoxic MMSCs promoted 
significantly collagen synthesis and migration of human dermal fibroblasts in vitro, and 
reduced the wound area in animal studies. These effects were based on up-regulation of 
growth factors such as the vascular endothelial growth factor (VEGF) and basic fibroblast 
growth factor (bFGF) [Lee et al., 2009]. 

The data above demonstrated clearly that low oxygen concentration in MMSCs 
microenvironment in vitro leads to modulation of MMSCs functions rather than impairment. 
The question arises whether extremely low oxygen (~ 0% O2) brings damage to MMSCs? 

Papers dedicated to MMSCs and anoxia are few and far between. Nevertheless, the data on 
the “true” anoxia effects on MMSCs in vitro do exist. For example, studies of Annexin V-
positive cells  in rat bone marrow MMSC culture during 12 h anoxia exposure revealed a 
time-dependent increase in apoptotic cells from 3% to 15%. When following a 3 h anoxic 
exposure  these MMSCs (apoptotic rate ~ 4%) were cocultured with rat’s cardiomyocytes or 
injected into infarcted zone in the heart, cardiomyocyte death reduced significantly owing to 
the  treatmeant with both normoxic MMSCs and anoxic MMSCs, the Bcl-2/Bax protein ratio 
increased and cleaved cysteine-aspartic acid protease-3 decreased; anoxic MMSCs were 
superior to MMSCs in the normoxic condition. Consequently, MMSCs exert the 
antiapoptotic effect on cardiomyocytes, partially by paracrine action. The authors assume 
that anoxic preconditioning may be an effective and convenient way to enhance the 
cardioprotective effect of MMSCs [He et al., 2009].  

3. Resistance of rat’s marrow MMSCs to extremely low oxygen 

Cell morphology and immunophenotype. We have examined the direct effects of 96 h anoxia 

(0%O2) on rat bone marrow MMSCs. Anoxia did not affect cell morphology. The 
percentage of MMSCs bearing CD90, CD54, CD44, CD29 (more than 95%), CD45, CD11b 
(less than 0.6%) molecules, and pattern of molecules expression were identical in normoxic 
and anoxic cells. The slight reduction in percentage of positive cells at anoxia was observed 
only for the CD73 marker (72% in normoxia vs 67% in anoxia).  

Cell growth. Assessment of bone marrow MMSC proliferation in 1-4th passages did not reveal 

inhibition of the MMSC proliferative activity [Fig. 1; Anokhina et al., 2009]. It should be 

mentioned that during MMSC exposure  in hypoxia proliferative rate displayed a more 

pronounced excess over normoxic MMSCs [Buravkova et al., 2007] as compared to  anoxic 

MMSCs. Nevertheless, the fact that MMSCs can really proliferate in anoxia seems amazing 

and deserves special attention.  

Absence of evidence for cell proliferation inhibition/deceleration in anoxia disagrees with 

the results of experiments demonstrating the cell cycle arrest in the conditions of anoxia 

[Amellem et al., 1994; Gardner et al., 2001; Goda  et al., 2003].  

The mechanism of inactivation of enzymes involved in nucleic acids production and 
subsequent inhibition of DNA replication was proposed as an explanation of the 
phenomenon of the cell growth arrest in murine embryonic fibroblasts and splenic B 
lymphocytes in low oxygen environment. Moreover, this held true for total oxygen 
deprivation (0.01%) or anoxia only, but not for 0.1-1% O2 [Goda et al., 2003]. The drop in 
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bromodeoxyuridine incorporation into murine embryonic fibroblast DNA also confirmed 
growth arrest due to blockade of replication in anoxia [Gardner et al., 2001]. At very low O2 

(0.01-0.13%) NHIK 3025 cells were able to enter into S-phase of cell cycle but failed to 
complete DNA synthesis [Amellem et al., 1994]. 

MMSC increase, folds
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Fig. 1. Rat bone marrow MMSC growth after 96 h of exposure in 20% O2 - ฀, and  
 ~0% O2 - ■ on 1st-4th passages. The averaged data of 7 independent experiments are 
presented as M+m. 

However, in anoxic conditions MMSCs showed a normal process of cell division.  It is 
known that different cell types are characterized by varying resistance to O2 deprivation in 
microenvironment [Ivanovic, 2009; Mohyeldin et al., 2010]. If a trace amount of O2 
remaining in pericellular space after gas force-out is sufficient for DNA replication, cell 
division can be completed successfully, otherwise cells will undergo apoptosis. On the other 
hand, it was shown that fibroblasts are able to recover after the cell cycle arrest in anoxic 
conditions [Gardner et al., 2001]. To sum up,  cellular mechanisms underlying MMSCs 
proliferation in anoxia are not clear.  

Cell viability. The data on MMSCs viability in normoxic vs anoxic conditions are presented 

on Fig. 2. Though the share of damaged (apoptotic+necrotic) cells in anoxia did not differ 

from that in normoxic conditions significantly, the rate of apoptotic cells was doubled in 

anoxia (p<0.05) (Fig. 2). 

Therefore, 96 h anoxia did not lead to a considerable increase in the number of damaged 

cells. At the same time, anoxia appeared to induce apoptosis in MMSCs. It is believed that 

apoptosis may be associated with anoxia, since a significant O2 reduction increases 

frequency of point mutations accumulation of which can be prevented by cell death through 

the apoptotic path [Greijer & van der Wall, 2004]. Apoptosis due to O2 deprivation can be 

triggered by different mechanisms. The key role is played by ROS, JNK kinase, and 

cytochrome C release from mitochondria mediated, in its turn, by various factors including 
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p53. p53 induction may result from stabilization of HIF-1α protein, the key transcription 

factor involved in hypoxia and capable to start other, p53-indepent mechanisms of apoptosis 

[Greijer & van der Wall, 2004]. Besides apoptosis, O2 deprivation can mobilize some other 

cell death pathways based on indirect effects of O2 reduction. Intracellular acidosis triggered 

by O2 deprivation is the most important one [Schmaltz et al., 1998].  
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Fig. 2. Rat bone marrow MMSC viability after 96 h of exposure in 20% O2 - ฀, and    
~0% O2  -  ■. AnnV+ cells – MMSCs, stained with Annexin V-FITC. PI+ cells – MMSCs 
stained with Propidium Iodide. Total damaged cells – (AnnV+ cells) + (PI+ cells). The 
averaged data of 12 independent experiments are presented as M+m. 

Earlier we described the antiapoptotic effects of hypoxia on rat bone marrow MMSCs 

[Buravkova et al., 2007]. The antiapoptotic effect of hypoxia and proapoptotic effect of 

anoxia may be explained using the data on the impact of HIF phosphorylation level on cell 

viability. The dephosphorylated HIF-1α subunit may indicate the proapoptotic HIF effect 

through p53 binding, whereas phosphorylated HIF-1α  does not [Suzukiet al., 2001]. It may 

also come in line with the data suggesting that the proapoptotic effect of low oxygen 

depends on HIF stabilization occurring mostly at less than 5% oxygen, while the 

antiapoptotic hypoxia effect takes place regardless of HIF [Jiang, Semenza, Bauer 1996; 

Greijer & van der Wall, 2004]. 

Thus, path of cell death may be determined by severity of O2 deprivation which  is 

illustrated by the opposing apoptotic trends in hypoxia and anoxia. 

Despite the relative MMSC resistance to 96 h anoxia, a prolonged exposure (up to 3 weeks) 

to anoxic conditions resulted in a significant reduction in cells viability (Tabl. 2). During 3 

weeks in culture the percent of damaged MMSCs in normoxia and hypoxia varied 

insignificantly (Tabl. 2). Prolonged MMSCs exposure in anoxia led to a drastic decrease in 

viability up to 22% after one week, 50% after 2 weeks and to practically total cell death after 
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3 weeks. Necrosis was the predominant path of cell death in anoxic MMSCs, though the 

percentage of apoptotic cells increased also significantly (Таb.2). 

 

After 1st week AnnV+ (%) PI + (%) Damaged cells, total (%) 

Normoxia (20% O2) 5,7 ± 0,7 5,0 ± 0,2 10,8 ± 0,9 

Hypoxia (5% O2) 4,9 ± 0,8 10,0 ± 0,7 14,9 ± 0,1 

Anoxia (~0% O2) 8,1 ± 0,7 13,9 ± 0,6 22,0 

After 2 weeks    

Normoxia (20% O2) 1,2 ±  0,2 4,9 ± 0,04 6,2 ± 0,2 

Hypoxia (5% O2) 3,0 ± 0,01 10,3 ± 0,5 13,3 ± 0,5 

Anoxia (~0% O2) 16,8 ± 0,4 42,2 ± 2,0 58,9 ± 1,6 

After 3 weeks    

Normoxia (20% O2) 1,4 ±  0,4 8,2 ± 0,1 9,7 ± 0,5 

Hypoxia (5% O2) 0,4 ±  0,1 7,4 ± 0,4 7,8 ± 0,3 

Anoxia (~0% O2) 8,2 ±  0,4 89,0 ± 0,7 97,2 ± 1,1 

The averaged data of 5 independent experiments are presented as M+m.  

Table 2. Rat bone marrow MMSC viability after prolonged exposure in normoxia, hypoxia 
and anoxia.  

The predominance of necrosis over apoptosis in MMSCs in the course of prolonged 

exposure to anoxia seems quite natural. In contrast to necrosis, apoptosis is a programmed 

energy-dependent cell death and, therefore, cell death path is determined by energy state of 

cells [Leist et al., 1997].  

Consequently, MMSC death due to short-term anoxia is minimal and realized primary 

through the apoptotic pathway. Prolonged anoxic exposure induced massive cell death 

associated mainly with necrosis. 

Cell differentiation. Evaluation of the MMSC differentiation capacity was carried out after 8 

days in anoxia because of quite rapid decline  of MMSC viability with exposure extention, as 

was described above. Spontaneous and induced osteogenic differentiation was revealed in 

anoxic MMSCs with alkaline phosphatase staining; the intensity of the process was found 

significantly less pronounced than in normoxic MMSCs (Fig.3). The mechanism of O2-

mediated suppression of osteogenic capacity of human bone marrow MMSCs and murine 

osteoblasts in the condition of O2 deprivation (hypoxia (2% O2) and anoxia (0.02% O2)) was 

demonstrated earlier. The authors made a supposition  that anoxia rather than hypoxia 

provoked inhibition of Runx2 protein expression, the key transcription factor in 

osteogenesis. Runx2 suppression resulted in inhibition of nodule formation and a significant 

reduction in mineralization of the extracellular matrix [Salim et al., 2004].  
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Fig. 3. Spontaneous (a,c,e) and induced (b,d,f) osteodifferentiation in rat bone marrow 
MMSCs after 8 days exposure in normoxic (20% O2) (a,b), hypoxic (5% O2) (c,d) and anoxic 
(~0% O2) (e,f) conditions. Alkaline phosphatase, representative images of MMSCs on 3rd 
passage, 100х. 

Accumulation of lipid droplets in anoxic MMSCs indicated of differentiation in the 
adipogenic direction was both spontaneus and induced (Fig. 4). Further extension of 
exposure in anoxia caused  death of differentiating MMSCs. It appears that  alteration of  
MMSCs viability rather  than of differentiating capacity was the cause of differentiation 
suppression  in anoxia. 

Thus, 96 h anoxia didn’t lead to changes in MMSC morphology, proliferation rate and 
immunophenotype, which may obviously indicate MMSC functional stability under 
reduced oxygen tension. Also, anoxia didn’t increase significantly the percentage of 
damaged cells despite some activation of apoptosis. Further MMSC propagation in anoxia 
led to progressive damage of cells mainly by necrosis in contrast to apoptosis as a main 
death pathway in short-term anoxia and the antiapoptotic effect of hypoxia. Short-term 
anoxia did not inhibit the initial stages of stimulated adipo- and osteo-differentiation 
[Tuncay et al., 1994; Matsuda et al., 1998]. Probably, trace oxygen is enough for some 
MMSCs to start differentiation and the only limiting factor is viability in anoxia rather than 
termination of the differentiation signaling pathways. 
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 а.  b. 

 c.  d. 

 e.  f. 

Fig. 4. Spontaneous (a,c,e) and induced (b,d,f) adipodifferentiation in rat bone marrow 
MMSCs after 4 days exposure in normoxic (20% O2) (a,b), hypoxic (5% O2) (c,d) and anoxic 
(~0% O2) (e,f) conditions. Lipid droplets were evaluated with Oil Red O staining, 
representative images of MMSCs on 3rd passage, 400х. 

4. Susceptibility of human adipose-tissue derived MMSCs  to anoxia  

In order to expand our understanding of stromal precursor adaptation to extremely low 

oxygen we continued studies of anoxia effects on human MMSCs from adipose tissue. 

MMSCs of 2-4 passsages were subjected to anoxic condition over 240 hours. We did not 

change culture medium in the course  of exposure in anoxia, which induced an additional 

stress from nutrient “starvation”. Cells of the same passage were placed  in normoxia (20% 

O2) as reference “starvation” cells, and also reference“standard” cells with regular medium 

replacement every third day were used.  

Cell growth. To characterize cell growth, we evaluated increase in MMSC population in each 
experimental condition. In the “standard” condition at 20% O2 MMSC population grew 7.1 
folds (Fig. 5). After 240 h w/o medium change, i.e. under nutrients deprivation, growth of 
normoxic MMSCs made up only 4.4 folds. In anoxic cultures cell population increased 3.9 
folds (Fig. 5). Against expectations, anoxia did not suppress MMSCs growth. Increase in 
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MMSC number was slightly less pronounced than in normoxic MMSCs in the condition of 
starvation. It appears, that starvation decreased oxygen demand but  did not stop cell 
proliferation. The mechanism regulating MMSC proliferation under increasing oxygen 
limitation is still unclear.  

MMSC increase, folds

0

3

6

9

 

Fig. 5. MMSC  increment during expansion in  in following conditions: ฀ - 20% O2, with 
regular medium changes (control), □ -20% O2, w/o medium replacement and ■ ~0% O2, 
w/o medium replacement. Results are representative of three independent experiments. 
Data are shown as M+m. 

Cell viability. We compared MMSC viability in the experimental conditions described in the 

context of cell death path (Tabl. 4). After 240 h in the standard normoxic condition, the share 

of necrotic and apoptotic MMSCs was similar and fairly low. Growth of MMSCs in 

normoxia and anoxia w/o medium replacement shifted the ratio of cell death path toward 

necrotic. Comparison of these data with MMSC proliferation makes it evident that cell 

population increase is higher in anoxia and that percent of necrotic cells is same as in 

normoxia, which means MMSCs growth prevails in anoxia.   

 

 

AnnV+ cells (%) PI + cells (%) Damaged cells, total 
(%) 
 

Standard culture condition  

20% O2 (control) 2,25 ± 0,12 2,20 ± 0,11 4,45 ± 0,22 

Growing cells, 240 hrs without medium replacement   

20% O2 0,70 ± 0,09 9,17± 0,42 9,87 ± 0,45 

20%→0% O2 2,51 ± 0,03 9,46 ± 0,08 11,97 ± 0,05 

The averaged data of 3 independent experiments are presented as M+m.  

Table 3. Human adipose-tissue derived MMSC viability after exposure in normoxia and 
anoxia.  
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Fig. 6. Cellular metabolism alterations in MMSCs after 240 h exposure in different culture 

conditions: ฀ - 20% O2, with regular medium changes (control), □ -20% O2, w/o medium 

replacement and ■ ~0% O2, w/o medium replacement. a,b. ROS production was evaluated 
with H2CFDA; c,d. Lyzosomes were stained with LysoTracker Green, f. Mitochondria were 
stained with MitoTracker Red.a,c,e – Number of stained MMSCs; b,d,f – Mean fluorescence 
intensity per cell. Results are representative of three independent experiments. Data are 
shown as M+m. 

Cellular organelle status. To clarify the mechanisms underlining MMSC resistance to 

extremely low oxygen in microenvironment, we characterized alterations in some vital 

parameters of cellular homeostasis (Fig. 6). After 240 h of anoxia, MMSCs demonstrated an 

increase in percent of MMSCs containing intracellular ROS (4% vs 1.2% in normoxia) w/o 

increase in mean fluorescence intensity (MFI) per a cell (the parameter describes the relative 

amount of fluorochrome in the cell). The number of MMSCs with active lyzosomes and 

unchanged MFI decreased drastically in anoxia. It is interesting, that long-term anoxia 

neither affected the mitochondrial compartment (all cells imposed active mitochondria) nor 
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influenced the mitochondrial transmembrane potential. Thus, in comparison with normoxia, 

anoxia increased slightly the number of cells with intracellular ROS and decreased 

significantly the number of MMSCs with active lyzosomes. 

It is nessesary to underline that cell growth potential and viability of human adipose-
derived MMSCs depend more on nutrient’s supply than on the concentration of oxygen. 
The drastical increase in the number of cells with active lysosomes under combination of 
nutrients starvation and anoxia should be clarified further. 

Taking together, presented data confirm that MMSCs from different source are 
extraordinary resistant to extermely low oxygen in the microenvironment. In anoxic 
conditions MMSCs retain their properties to proliferate and differentiate in mesenchyma-
specific lineages and also possess fairly high viability. Nevertheless, long-term anoxia 
provoked cell death in MMSCs mainly through necrotic pathway. 

5. Concluding remarks 

The data reviewed above and our own results demonstrate clearly that low oxygen tension 
is undoubtedly an important regulator of MMSCs maintenance and plays a pivotal role in 
architecturing the MMSCs microenvironment. With oxygen partial pressure sublethal or 
lethal for other cell types, MMSCs not only survive but enhance proliferative activity and 
slow down differentive capacity supporting “stemness”. Low oxygen conditions accentuate 
the paracrine role of MMSCs by altering the soluble factor release which is  also plays an 
important role in mobilizing MMSCs and recruiting them to site of injury. MMSC ability to 
outlive low/extremely low oxygen (anoxia) probably, is based on their capacity to 
upregulate survival pathways and increase glycolytic metabolism. MMSCs are very tolerant 
of oxygen starvation keeping their morphology, immunophenotype and proliferation rate, 
demonstrating slightly affected metabolism and potency to mesenchymal lineage 
differentiation. Short-term anoxia gives start to apoptosis in contrast to hypoxia which 
exerts the antiapoptotic effects on MMSCs. Long-term anoxia provokes progressive MMSC 
damage mainly through the necrotic pathway. The effects of hypoxia and anoxia may be 
diverse and accounted to the fact, that low oxygen simulates the in vivo conditions and can 
be regarded as an approximation of the physiological MMSC milieu rather than the hypoxic 
impact. On the contrary, anoxia may represent a real hypoxic microenvironment for these 
cells.  

These results are very encouraging both for understanding particular mechanisms of MMSC 
existence in different microenvironments and cell therapy as an instrument of MMSC ex vivo 
modification. In view of the outstanding properties, MMSCs are considered as a perspective 
tool for cell therapy and regenerative medicine. These cells have already shown a great 
regenerative potential in preclinical studies and clinical trials. The quality of cell product for 
these purposes is very important. Up to now, in a few studies MMSCs ex vivo expanded at 
low oxygen and anoxia demonstrated regenerative properties superior to MMSCs 
propagated by the standard cultivation. The possibility to modify MMSC properties ex vivo 
opens great opportunities for implication of ‘hypoxic” or even “anoxic” protocol for MMSC 
expansion to meet the needs of cell therapy. Nevertheless, the question about the true 
hypoxic environment for mesenchymal stromal progenitor cells still has not got the final 
answer  and invites further investigations.  
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