826 research outputs found

    Geometric approach to nonvariational singular elliptic equations

    Full text link
    In this work we develop a systematic geometric approach to study fully nonlinear elliptic equations with singular absorption terms as well as their related free boundary problems. The magnitude of the singularity is measured by a negative parameter (γ−1)(\gamma -1), for 0<γ<10 < \gamma < 1, which reflects on lack of smoothness for an existing solution along the singular interface between its positive and zero phases. We establish existence as well sharp regularity properties of solutions. We further prove that minimal solutions are non-degenerate and obtain fine geometric-measure properties of the free boundary F=∂{u>0}\mathfrak{F} = \partial \{u > 0 \}. In particular we show sharp Hausdorff estimates which imply local finiteness of the perimeter of the region {u>0}\{u > 0 \} and Hn−1\mathcal{H}^{n-1} a.e. weak differentiability property of F\mathfrak{F}.Comment: Paper from D. Araujo's Ph.D. thesis, distinguished at the 2013 Carlos Gutierrez prize for best thesis, Archive for Rational Mechanics and Analysis 201

    Casimir force on a piston

    Full text link
    We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional L x b rectangular box, divided by a movable partition (piston) into two compartments of dimensions a x b and (L-a) x b. We compute the Casimir force on the piston in the limit L -> infinity. Regardless of the value of a/b, the piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are derived for a << b and a >> b.Comment: 10 pages, 1 figure. Final version, accepted for publication in Phys. Rev.

    Existence of superposition solutions for pulse propagation in nonlinear resonant media

    Get PDF
    Existence of self-similar, superposed pulse-train solutions of the nonlinear, coupled Maxwell-Schr\"odinger equations, with the frequencies controlled by the oscillator strengths of the transitions, is established. Some of these excitations are specific to the resonant media, with energy levels in the configurations of Λ\Lambda and NN and arise because of the interference effects of cnoidal waves, as evidenced from some recently discovered identities involving the Jacobian elliptic functions. Interestingly, these excitations also admit a dual interpretation as single pulse-trains, with widely different amplitudes, which can lead to substantially different field intensities and population densities in different atomic levels.Comment: 11 Pages, 6 Figures, presentation changed and 3 figures adde

    Selberg Supertrace Formula for Super Riemann Surfaces III: Bordered Super Riemann Surfaces

    Full text link
    This paper is the third in a sequel to develop a super-analogue of the classical Selberg trace formula, the Selberg supertrace formula. It deals with bordered super Riemann surfaces. The theory of bordered super Riemann surfaces is outlined, and the corresponding Selberg supertrace formula is developed. The analytic properties of the Selberg super zeta-functions on bordered super Riemann surfaces are discussed, and super-determinants of Dirac-Laplace operators on bordered super Riemann surfaces are calculated in terms of Selberg super zeta-functions.Comment: 43 pages, amste

    The influence of localised size reorganisation on short-duration bidispersed granular flows

    Get PDF
    We investigate experimentally the runout resulting from the collapse of a granular column containing two particle species that differ in size only. The experimental configuration is strictly twodimensional (only one particle per width of the experimental tank) and we explore both the role of the initial arrangement and proportion of the two particle sizes in the column, using high-speed videography, and by determining the centres of mass of the big and small particles in the initial column and the final deposit. The duration of the experiment is sufficiently short that large-scale segregation does not occur, however, we find a clear dependence of runout on both initial mixture arrangement and proportion for all conditions. We investigated this observation through detailed analysis of the flow front motion, and identify a characteristic "stopping" phase when dissipation dominates, and we apply a shallow layer model at the flow front to show how the initial mixture arrangement and proportion influence the effective coefficient of friction during emplacement. We find that a bidispersed mixture can induce a larger friction on emplacement than a monodispersed mixture, and the highest coefficient of friction was found for a well-mixed initial arrangement of particles at the proportion that shows maximum horizontal spreading of the flow. These observations suggest that downwards percolation of fine particles takes place at the front of the collapsing column, and so localised size segregation processes at the flow front can control flow mobility. This effect is likely to be important in controlling the mobility of large geophysical flows that occur on finite time scales, and whose deposits typically show granular segregation at the front and edges but not throughout the entire deposit

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    Numerical simulations of the Warm-Hot Intergalactic Medium

    Get PDF
    In this paper we review the current predictions of numerical simulations for the origin and observability of the warm hot intergalactic medium (WHIM), the diffuse gas that contains up to 50 per cent of the baryons at z~0. During structure formation, gravitational accretion shocks emerging from collapsing regions gradually heat the intergalactic medium (IGM) to temperatures in the range T~10^5-10^7 K. The WHIM is predicted to radiate most of its energy in the ultraviolet (UV) and X-ray bands and to contribute a significant fraction of the soft X-ray background emission. While O VI and C IV absorption systems arising in the cooler fraction of the WHIM with T~10^5-10^5.5 K are seen in FUSE and HST observations, models agree that current X-ray telescopes such as Chandra and XMM-Newton do not have enough sensitivity to detect the hotter WHIM. However, future missions such as Constellation-X and XEUS might be able to detect both emission lines and absorption systems from highly ionised atoms such as O VII, O VIII and Fe XVII.Comment: 18 pages, 5 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 14; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
    • …
    corecore