6 research outputs found

    The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds

    No full text
    A common phenomenon in tissue engineering is rapid tissue formation on the outer edge of the scaffold which restricts cell penetration and nutrient exchange to the scaffold centre, resulting in a necrotic core. To address this problem, we generated scaffolds with both random and anisotropic open porous architectures to enhance cell and subsequent tissue infiltration throughout the scaffold for applications in bone and cartilage engineering. Hydroxyapatite (HA) and poly(D,L-lactic acid) (P(DL)LA) scaffolds with random open porosity were manufactured, using modified slip-casting and by supercritical fluid processing respectively, and subsequently characterised. An array of porous aligned channels (400 microm) was incorporated into both scaffold types and cell (human osteoblast sarcoma, for HA scaffolds; ovine meniscal fibrochondrocytes, for P(DL)LA scaffolds) and tissue infiltration into these modified scaffolds was assessed in vitro (cell penetration) and in vivo (tissue infiltration; HA scaffolds only). Scaffolds were shown to have an extensive random, open porous structure with an average porosity of 85%. Enhanced cell and tissue penetration was observed both in vitro and in vivo demonstrating that scaffold design alone can influence cell and tissue infiltration into the centre of tissue engineering scaffold

    Critical Role for CD1d-Restricted Invariant NKT Cells in Stimulating Intrahepatic CD8 T-Cell Responses to Liver Antigen

    No full text
    V alpha14 invariant natural killer T cells (iNKT) are localized in peripheral tissues such as the liver rather than lymphoid tissues. Therefore, their role in modulating the stimulation of conventional, major histocompatibility complex (MHC)-restricted T-cell responses has remained ambiguous. We here describe a role for V alpha14 iNKT cells in modulating conventional T-cell responses to antigen expressed in liver, using transferrin-mOVA (Tf-mOVA) mice. Naïve ovalbumin-specific class I MHC-restricted T cells (OTI) were adoptively transferred into Tf-mOVA mice in the presence or absence of iNKT-cell agonist alpha-galactosylceramide, after which OTI T-cell priming, antigen-specific cytokine production, cytotoxic killing ability, and liver damage were analyzed. Transfer of OTI cells resulted in robust intrahepatic, antigen-specific proliferation of T cells. OTI T cells were activated in liver, and antigen-specific effector function was stimulated by coactivation of Valpha14 iNKT cells using alpha-galactosylceramide. This stimulation was absent in CD1d(-/-)Tf-mOVA mice, which lack V alpha14 iNKT cells, and was prevented when interferon-gamma and tumor necrosis factor-alpha production by V alpha14 iNKT cells was blocked. CD1d-restricted V alpha14 iNKT cells stimulate intrahepatic CD8 T-cell effector responses to antigen expressed in liver. Our findings elucidate a previously unknown intervention point for targeted immunotherapy to autoimmune and possibly infectious liver disease

    Molecular Networks Orchestrating GALT Development

    No full text

    The Mucosal B-Cell System

    No full text
    corecore