151 research outputs found

    Reliability-based covariance control design

    Full text link
    An extension to classical covariance control methods, introduced by Skelton and co-workers, is proposed specifically for application to the control of civil engineering structures subjected to random dynamic excitations. The covariance structure of the system is developed directly from specification of its reliability via the assumption of independent (Poisson) outcrossings of its stationary response process from a polyhedral safe region. This leads to a set of state covariance controllers, each of which guarantees that the closed-loop system will possess the specified level of reliability. An example civil engineering structure is considered

    Investigating a reliable covariance control scheme for MDOF systems

    Full text link
    The authors attempt to extend their previous efforts towards a reliable control scheme that guarantees a specified degree of reliability for civil engineering structures. Herein, a two degree of freedom system is examined. Covariance control techniques are explored to design a compensator that will provide optimal closed loop performance, while satisfying a constraint on system reliability. It was found for the system under examination that a stable control does not exist that also meets the target reliability level. Alternate formulations continue to be investigated

    Analytical characterization of damping in gear teeth dynamics under hydrodynamic conditions

    Get PDF
    Using an analytical method, we characterize damping and stiffness in lightly loaded, lubricated gear pairs at different operating speeds and lubricant temperatures. This is accomplished by employing a trace method to approximate and model the hysteresis loop of the lubricant reaction, thus recording the energy transformation mechanism during the gear teeth oscillatory motion. The method can be expanded for use in a variety of problems where hydrodynamic vibro-impacts lead to energy dissipation

    Tailoring strongly nonlinear negative stiffness

    Get PDF
    Negative, nonlinear stiffness elements have been recently designed as configurations of pairs or groups of linear springs. We propose a new design of such a system by using a single linear spring with its moving end rolling on a path described by an equation of varying complexity. We examine the effect that the selection of the path has on the size of the deflection regime where negative stiffness is achieved. The stability properties of the equilibrium positions of the system are also investigated, highlighting the influence that the complexity of the path equation brings. The latter naturally affects the characteristics of the forcing functions around these positions. It is demonstrated that the properties of the system can be tailored according to the nature of the equation used and we show how essentially nonlinear negative stiffness elements, (i.e., with no linear parts) can be designed. These results provide a useful standpoint for designers of such systems, who wish to achieve the desired properties in reduced space, which is a common requirement in modern applications

    Constructions of free commutative integro-differential algebras

    Full text link
    In this survey, we outline two recent constructions of free commutative integro-differential algebras. They are based on the construction of free commutative Rota-Baxter algebras by mixable shuffles. The first is by evaluations. The second is by the method of Gr\"obner-Shirshov bases.Comment: arXiv admin note: substantial text overlap with arXiv:1302.004

    Targeted energy transfer in automotive powertrains

    Get PDF
    Torsional oscillations generated by the internal combustion engine induce various NVH phenomena in the drivetrain system, one being transmission rattle. Palliatives devices such as the clutch predampers or dual mass flywheel have been used to mitigate these NVH phenomena. However, usually these devices are effective over a limited range of frequencies, and not so for broadband transient phenomenon, such as any impulsive actions. This paper considers the Targeted Energy Transfer (TET) method to mitigate torsional vibrations in automotive powertrains. TET is a concept which attempts to direct the mechanical (vibration) energy (in a nearly irreversible manner) from a source (primary system) to a strongly nonlinear attachment (Nonlinear Energy Sink – NES), where it is absorbed, redistributed and/or dissipated. In contrast to the classical powertrain palliative methods, NES should be capable of operating over a broader band of frequencies (with the additional aim of being lightweight and compact). Although the TET concept has been extensively studied for translational systems, there is a dearth of studies for rotational (torsional) ones. In the present work, preliminary parametric studies are performed on a reduced automotive powertrain model, incorporating a NES attachment. The NES parameters, including nonlinear stiffness, viscous linear damping and inertia are varied in order to determine NES effects on engine order (EO) vibration

    A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities

    Get PDF
    The automotive industry is predominantly driven by legislations on stringent emissions. This has led to the introduction of downsized engines, incorporating turbocharging to maintain output power. As downsized engines have higher combustion pressures, the resulting torsional oscillations (engine order vibrations) are of broadband nature with an increasing severity, which affect noise and vibration response of drive train system. Palliative devices, such as clutch pre-dampers and dual mass flywheel have been used to mitigate the effect of transmitted engine torsional oscillations. Nevertheless, the effectiveness of these palliative measures is confined to a narrow band of response frequencies. Studying nonlinear targeted energy transfers is a promising approach to study vibration mitigation within a broader range of frequencies, using nonlinear vibration absorbers (or nonlinear energy sinks – NESs). These devices would either redistribute vibration energy within the modal space of the primary structure thus dissipating the vibrational energy more efficiently through structural damping, or passively absorb and locally dissipate a part of this energy (in a nearly irreversible manner) from the primary structure . The absence of a linear resonance frequency of an NES, enables its broadband operation (in contrast to the narrowband operation of current linear tuned mass dampers). Parametric studies are reported to determine the effectiveness of various smooth or non-smooth nonlinear stiffness characteristics of such absorbers. A reduced drivetrain model, incorporating single and multiple absorber attachments is used and comparison of the predictions to numerical integrations proves its efficacy

    Slow fluctuations in enhanced Raman scattering and surface roughness relaxation

    Full text link
    We propose an explanation for the recently measured slow fluctuations and ``blinking'' in the surface enhanced Raman scattering (SERS) spectrum of single molecules adsorbed on a silver colloidal particle. We suggest that these fluctuations may be related to the dynamic relaxation of the surface roughness on the nanometer scale and show that there are two classes of roughness with qualitatively different dynamics. The predictions agree with measurements of surface roughness relaxation. Using a theoretical model for the kinetics of surface roughness relaxation in the presence of charges and optical electrical fields, we predict that the high-frequency electromagnetic field increases both the effective surface tension and the surface diffusion constant and thus accelerates the surface smoothing kinetics and time scale of the Raman fluctuations in manner that is linear with the laser power intensity, while the addition of salt retards the surface relaxation kinetics and increases the time scale of the fluctuations. These predictions are in qualitative agreement with the Raman experiments

    Tadpole Analysis of Orientifolded Plane-Waves

    Full text link
    We study orientifolds of type IIB string theory in the plane-wave background supported by null RR 3-form flux F^{(3)}. We describe how to extract the RR tadpoles in the Green-Schwarz formalism in a general setting. Two models with orientifold groups {1, \Omega} and {1,\Omega I_4}, which are T-dual to each other, are considered. Consistency of these backgrounds requires 32 D9 branes for the first model and 32 D5 branes for the second one. We study the spectra and comment on the heterotic duals of our models.Comment: 22+1 pages, 3 figures References added, minor typos correcte

    No Evidence for Disease History as a Risk Factor for Narcolepsy after A(H1N1)pdm09 Vaccination

    Get PDF
    OBJECTIVES: To investigate disease history before A(H1N1)pdm09 vaccination as a risk factor for narcolepsy.METHODS: Case-control study in Sweden. Cases included persons referred for a Multiple Sleep Latency Test between 2009 and 2010, identified through diagnostic sleep centres and confirmed through independent review of medical charts. Controls, selected from the total population register, were matched to cases on age, gender, MSLT-referral date and county of residence. Disease history (prescriptions and diagnoses) and vaccination history was collected through telephone interviews and population-based healthcare registers. Conditional logistic regression was used to investigate disease history before A(H1N1)pdm09 vaccination as a risk-factor for narcolepsy.RESULTS: In total, 72 narcolepsy cases and 251 controls were included (range 3-69 years mean19-years). Risk of narcolepsy was increased in individuals with a disease history of nervous system disorders (OR range = 3.6-8.8) and mental and behavioural disorders (OR = 3.8, 95% CI 1.6-8.8) before referral. In a second analysis of vaccinated individuals only, nearly all initial associations were no longer statistically significant and effect sizes were smaller (OR range = 1.3-2.6). A significant effect for antibiotics (OR = 0.4, 95% CI 0.2-0.8) and a marginally significant effect for nervous system disorders was observed. In a third case-only analysis, comparing cases referred before vaccination to those referred after; prescriptions for nervous system disorders (OR = 26.0 95% CI 4.0-170.2) and ADHD (OR = 35.3 95% CI 3.4-369.9) were statistically significant during the vaccination period, suggesting initial associations were due to confounding by indication.CONCLUSION: The findings of this study do not support disease history before A(H1N1)pdm09 vaccination as a risk factor for narcolepsy
    • …
    corecore