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Abstract 

Negative, nonlinear stiffness elements have been recently designed as configurations of pairs or groups 

of linear springs. We propose a new design of such a system by using a single linear spring with its 

moving end rolling on a path described by an equation of varying complexity. We examine the effect 

that the selection of the path has on the size of the deflection regime where negative stiffness is 

achieved. The stability properties of the equilibrium positions of the system are also investigated, 

highlighting the influence that the complexity of the path equation brings. The latter naturally affects 

the characteristics of the forcing functions around these positions. It is demonstrated that the 

properties of the system can be tailored according to the nature of the equation used and we show how 

essentially nonlinear negative stiffness elements, (i.e., with no linear parts) can be designed. These 

results provide a useful standpoint for designers of such systems, who wish to achieve the desired 

properties in reduced space, which is a common requirement in modern applications. 
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1. Introduction 

Negative stiffness elements have been utilized by researchers in an effort to mitigate vibrations in 

engineering structures. They involve a reversal of the usual directional relationship between force and 

displacement by assisting the imposed deflection. For example, buckled tubes exhibit negative stiffness 

to perturbations about a deformed state, where snap-through could also occur. Platus [1] and Trimboli 

et al. [2] have used springs with negative and positive stiffness coefficients in parallel configurations to 

achieve vibration isolation in a suspension system. A new design to achieve vibration isolation was 

proposed in [3] by setting up a serial connection between two springs of negative and positive stiffness 

coefficients (active vibration isolation). This configuration can lead to infinite stiffness against external 

disturbances. Tests were conducted on a bi-stable element (pre-buckled beam) that has been shown 

theoretically to exhibit negative stiffness behaviour [4]. The results indicated that a negative stiffness 

system has the ability to increase damping. An approach – based on the theory of thin shells – to design 

springs in order to minimize the suspension stiffness, and thus the fundamental frequencies for vehicle 

vibration isolation, was presented in [5]. There, a generic model of a spring element with variable 

negative stiffness was proposed. The mechanism was used in seat suspensions and was tested in 

vehicles, construction equipment and agricultural machines [6]. Similarly, a highly deformed slender 

beam attached to a vertically oscillating base was used in a vibration isolation application [7]. The extent 

of the beam’s deflection was used to tailor its stiffness to achieve desirable isolator characteristics. The 

numerical results were verified by experimental measurements. 

The stability of systems with negative stiffness elements has been analysed in [8].  A model of spring 

networks was used, and was found to be stable at the equilibrium point when tuned for high compliance 

but unstable when tuned for high stiffness. Additionally, it was found that a negative stiffness element, 

though unstable on its own, can be stabilized by including it in a system of positive stiffness elements [8]. 
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Wang [9] has provided a summary of developments in this field, focused on the stability of negative 

stiffness discrete mechanical systems. Additionally, the equivalence among negative stiffness, pre-load 

and geometric nonlinearity was demonstrated by using discrete mechanical systems [9]. The static 

characteristics of a quasi-zero stiffness mechanism were investigated in [10]. A negative stiffness 

element was used to achieve low stiffness without large static deflection values in a three-spring 

configuration. Optimization between the geometry and the relative stiffness values of the springs was 

conducted to achieve a large excursion from the static equilibrium position, such that the stiffness of the 

system does not exceed a prescribed value. An approximate polynomial expression for the stiffness of 

the system was also derived. A non-linear bi-stable system with negative stiffness was investigated in 

[11] in terms of its energy harvesting capabilities. Static analysis revealed how the spring arrangement 

can produce a region with negative stiffness. It was shown that the amount of energy harvested is at 

most 4/π times greater than that of the tuned linear absorber when the snap-through mechanism 

produces a square-wave-like response. 

In this work, a new methodology is proposed to tailor strongly nonlinear negative stiffness for 

mechanical applications. This is primarily based on varying the path of motion of the free end of a 

preloaded linear spring element, as well as its geometrical properties. Three different paths of motion 

are examined and preliminary results of the force and stiffness variation characteristics are presented. 

2. Methodology 

The system for achieving nonlinear negative stiffness is shown in Figure 1. The linear spring of constant 

ks is unloaded at position OP, where its length is l0. At any other position the length of the compressed 

(or extended) spring is determined by the coordinates (x, y) of the path, along which the free end is 

prescribed to move. The end O of the spring is fixed. The coordinate system (x, y) has its origin at point A. 

At this particular orientation the length of the spring is equal to l.  
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The force component acting in the y direction while the free end of the spring is moving on a prescribed 

path at a random location C, is 

     𝐹𝐹(𝑥𝑥,𝑦𝑦) = (𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑂𝑂)𝑘𝑘𝑠𝑠 sin𝛼𝛼 = 

= �
𝑂𝑂𝑂𝑂

cos𝛼𝛼
− 𝑂𝑂𝑂𝑂� 𝑘𝑘𝑠𝑠 sin𝛼𝛼 = 

= �
𝑙𝑙 + 𝑥𝑥
cos𝛼𝛼

− 𝑙𝑙0� 𝑘𝑘𝑠𝑠 sin𝛼𝛼 = 

                                                                       = 𝑘𝑘𝑠𝑠𝑦𝑦 �1 − 𝑙𝑙0
�𝑦𝑦2+(𝑙𝑙+𝑥𝑥)2

�     (1)  

where the angle α is given by 

                                                                      tan𝛼𝛼 = 𝐵𝐵𝐵𝐵
𝑂𝑂𝐵𝐵

= 𝐵𝐵𝐵𝐵
𝑂𝑂𝑂𝑂+𝑂𝑂𝐵𝐵

= 𝑦𝑦
𝑙𝑙+𝑥𝑥

 .    (2)  

The path of the curve that the free end of the spring follows can take any shape according to the design 

requirements. The following three curves (plotted in Figure 2) are proposed to examine the effect on the 

variation of the nonlinear force produced, 

𝑦𝑦 = 𝑐𝑐1𝑥𝑥 

𝑦𝑦 = 𝑐𝑐2𝑥𝑥2 

𝑦𝑦 = 𝑐𝑐3𝑥𝑥3 

where c1, c2 and c3 are constants. As it can be seen by comparing Figures 1 and 2, the reference position 

A has been conveniently chosen to correspond to the zero-slope meeting point of the quadratic and 

cubic path curves. Combinations of the above equations can be introduced, in order to build more 

complicated profile shapes as per the specific application considered.  
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After dividing both parts of equation (1) by 𝑘𝑘𝑠𝑠𝑙𝑙0 

     𝐹𝐹(𝑥𝑥,𝑦𝑦)
𝑘𝑘𝑠𝑠𝑙𝑙0

= 𝑦𝑦 �1
𝑙𝑙0
− 1

�𝑦𝑦2+(𝑙𝑙+𝑥𝑥)2
� .    (3)  

and introducing the following transformations [10, 11], 

𝐹𝐹�(𝑥𝑥,𝑦𝑦) = 𝐹𝐹(𝑥𝑥,𝑦𝑦)
𝑘𝑘𝑠𝑠𝑙𝑙0

,  𝑥𝑥� = 𝑥𝑥
𝑙𝑙0

,  𝑦𝑦� = 𝑦𝑦
𝑙𝑙0

  and  𝛾𝛾 = 𝑙𝑙
𝑙𝑙0

  , 

equation (3) takes the form 

    𝐹𝐹�(𝑥𝑥�,𝑦𝑦�) = 𝑦𝑦��1− [𝑦𝑦�2 + (𝛾𝛾 + 𝑥𝑥�)2]−1 2⁄ � .   (4) 

𝑦𝑦 = 𝑐𝑐3𝑥𝑥3. 

The parameter γ is a geometrical parameter. When γ = 0, the spring is initially vertical and when γ = 1, 

the free end of the spring is crossing the origin of the coordinate system. By varying the parameter γ, a 

series of graphs of force-deflection characteristics (𝐹𝐹�-𝑦𝑦�) is obtained for the three different paths of 

motion of the linear spring’s free end, which were presented in Figure 2. The results are depicted in 

Figure 3. As it can be seen, all three paths of motion exhibit variations in the slope of the force, which 

changes from positive to negative and to positive again for 0 ≤ γ ≤ 1. The size of the area of negative 

slope (stiffness) changes according to the path type of the free end of the linear spring and the value of 

the geometrical parameter γ. Clearly, the system exhibits strongly nonlinear characteristics. 

The non-dimensional stiffness, 𝐾𝐾� = 𝑘𝑘
𝑘𝑘𝑠𝑠

, of the system can be calculated by differentiating the force 

equation (4) with respect to the displacement to give the following expressions: 

𝐾𝐾� = 1 − 1
�𝑦𝑦�2+(𝑥𝑥�+𝛾𝛾)2

+ 𝑦𝑦�2+𝑥𝑥�𝛾𝛾+𝑥𝑥�2

[𝑦𝑦�2+(𝛾𝛾+𝑥𝑥�)2]3 2⁄  , when 𝑦𝑦 = 𝑐𝑐1𝑥𝑥   (5) 

𝐾𝐾� = 1 − 1
�𝑦𝑦�2+(𝑥𝑥�+𝛾𝛾)2

+ 𝑦𝑦�2+0.5𝑥𝑥�𝛾𝛾+0.5𝑥𝑥�2

[𝑦𝑦�2+(𝛾𝛾+𝑥𝑥�)2]3 2⁄  , when 𝑦𝑦 = 𝑐𝑐2𝑥𝑥2   (6) 
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𝐾𝐾� = 1 − 1
�𝑦𝑦�2+(𝑥𝑥�+𝛾𝛾)2

+
𝑦𝑦�2+13𝑥𝑥�𝛾𝛾+

1
3𝑥𝑥�

2

[𝑦𝑦�2+(𝛾𝛾+𝑥𝑥�)2]3 2⁄  , when 𝑦𝑦 = 𝑐𝑐3𝑥𝑥3   (7) 

A series of stiffness-deflection plots (𝐾𝐾�-𝑦𝑦�) is obtained for the three different paths of motion by varying 

the parameter γ (corresponding to the cases presented in Figure 3). The results are shown in Figure 4, 

where the dotted line corresponds to zero stiffness value, so that the transition points (from positive to 

negative stiffness and vice versa) are easily distinguishable. In Figures 4(b) and (c), the graphs that 

correspond to γ values of 0, 0.1 and 0.2 have been confined to the axis ordinate limit values. A general 

trend observed is that the higher are the values of parameter γ (smaller angles of the initial orientation 

of the spring) the larger is the size of the negative stiffness region, particularly in the cases of quadratic 

and cubic paths of motion. In addition, for lower values of γ (larger angles of the initial orientation of the 

spring), the minimum values of negative stiffness are much lower. On the other hand, the curves 

corresponding to γ = 1 appear to be weakly nonlinear, while the negative stiffness region begins for 

deflection values 𝑦𝑦� < 0. The region of the negative stiffness is also wider when 𝑦𝑦� < 0 compared to the 

other γ curves. 

A bi-stable configuration that exhibits negative stiffness characteristics, comprising two oblique springs, 

has been presented in [10]. In this case, the path of motion is vertical and the stiffness reaches its 

minimum at the static equilibrium position. The stiffness variation of the configuration of reference [10] 

has been compared to that of the examined system for the cases when γ = 0.1 and 0.4 (for all three 

different paths of motion). The results are presented in Figure 5. As it can be seen, the oblique springs 

achieve a broader area of negative stiffness compared to the case of a spring with varying path of 

motion. However, the minimum stiffness values obtained are lower in the latter case (quadratic and 

cubic paths), while the symmetry around the origin of the coordinate system is now broken.  
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It is interesting to examine what would be the variation in the force and stiffness characteristics of the 

system when the equation of the path of motion is modified by altering the value of the participating 

constant. Three different force-deflection and stiffness curves are presented in Figure 6, corresponding 

to paths with equation 𝑦𝑦 = 𝑐𝑐3𝑥𝑥3 for three different values of 𝑐𝑐3 and fixed value of γ = 0.4. It can be seen 

that as the constant value decreases, there is a decrease in the size of the region where negative 

stiffness is achieved. Additionally the minimum value of negative stiffness decreases as the constant 

value decreases (the corresponding values lay outside the boundaries of the graphs). 

From the graphs of Figure 3 it can be observed that the positions where force becomes zero are altered, 

thus affecting the equilibrium positions of the system. The latter locations 𝑦𝑦�1,2,3 are calculated by finding 

the roots of equation (4), which correspond to the positions where the vertical force is zero. This 

provides the following relations:  

 𝑦𝑦�1 = 0      (8) 

𝑦𝑦�2 = �1 − (𝛾𝛾 + 𝑥𝑥�)2     (9) 

      𝑦𝑦�3 = −�1 − (𝛾𝛾 + 𝑥𝑥�)2 .   (10) 

It can be concluded that equilibrium positions (9) and (10) can be modified according to the equation 

that describes the path of motion of the free spring end and the geometrical parameter γ. For simplicity 

reasons and in order to keep the presented expressions as less involved as feasible, the analysis below is 

confined to the case of the linear path, 𝑦𝑦 = 𝑐𝑐1𝑥𝑥. Expression for cases of quadratic and cubic paths of 

motion can be derived in a similar manner. Equations (9) and (10) are equivalent to the following 

expressions (after substituting the linear motion path equation that relates coordinates x and y): 

      𝑦𝑦�2 =
−𝑐𝑐1𝛾𝛾−𝑐𝑐1�1+𝑐𝑐12(1−𝛾𝛾2)

1+𝑐𝑐12
   (9’) 
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      𝑦𝑦�3 =
−𝑐𝑐1𝛾𝛾+𝑐𝑐1�1+𝑐𝑐12(1−𝛾𝛾2)

1+𝑐𝑐12
   (10’) 

Figure 7 exhibits the variation of the above equilibrium space with respect to parameters γ and 𝑐𝑐1. It can 

be seen that when small 𝑐𝑐1 values are chosen, both equilibrium points lay in the vicinity of the origin 

point A in the spring path (see Figure 1). Similar observation can be made when γ approaches unity.  

It is of interest to examine the stability properties of these equilibrium positions. This can be achieved by 

calculating the potential energy of the system, P. Then, the sign of the quantity 𝜕𝜕
2𝑃𝑃

𝜕𝜕𝑦𝑦�2
 is determined. When 

𝜕𝜕2𝑃𝑃
𝜕𝜕𝑦𝑦�2

 > 0, the equilibrium is stable, while for 𝜕𝜕
2𝑃𝑃

𝜕𝜕𝑦𝑦�2
 < 0, the equilibrium is unstable. When 𝜕𝜕

2𝑃𝑃
𝜕𝜕𝑦𝑦�2

 cannot be 

defined or is equal to zero, the system is marginally stable. It is found that for 𝑦𝑦 = 𝑐𝑐1𝑥𝑥, equilibrium 

positions (9) and (10) are stable, while equilibrium position (8) is unstable. Additionally, the symmetry of 

the equilibrium positions (9) and (10) with respect to 𝑦𝑦� = 0 is now broken. Figure 8 presents 𝜕𝜕
2𝑃𝑃

𝜕𝜕𝑦𝑦�2
 - 𝑦𝑦� plots 

of the system when 𝑦𝑦 = 𝑐𝑐1𝑥𝑥. 

The corresponding values of equilibrium locations are: 

- For γ =  0.4, 𝑦𝑦�1 = 0, 𝑦𝑦�2 = 0.478233 and 𝑦𝑦�3 = −0.878233 

- For γ =  0.6, 𝑦𝑦�1 = 0, 𝑦𝑦�2 = 0.34 and 𝑦𝑦�3 = −0.94 

When 𝑦𝑦 = 𝑐𝑐2𝑥𝑥2, equation (10) gives an imaginary number (marginally stable), while equilibrium position 

(9) is stable and equilibrium position (8) is unstable. Similar results occur when 𝑦𝑦 = 𝑐𝑐3𝑥𝑥3. Therefore, the 

choice of the path that the free end of the spring follows has a profound effect on the stability 

properties around the equilibrium positions of the system. 

The relationship between force and deflection - as graphically shown in Figure 3 - is nonlinear. It would 

be useful to expand it in a Taylor series around the aforementioned equilibrium positions in order to 
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highlight the main participating polynomial terms and the weight they carry. Therefore, when 𝑦𝑦� = 0, the 

expansion of equation (4) in a Taylor series gives the following expression: 

𝐹𝐹(𝑥𝑥�,𝑦𝑦�) ≈ (1 − 1
�(γ+𝑥𝑥�)2

)𝑦𝑦� + �(γ+𝑥𝑥�)2𝑦𝑦�3

2(γ+𝑥𝑥�)4
     (11) 

In the case of linear path, equation (8) becomes (after substituting the relation between 𝑥𝑥�,𝑦𝑦�): 

𝐹𝐹(𝑦𝑦�) ≈ (1 − 1
γ
)𝑦𝑦� + γ𝑦𝑦�2

𝑐𝑐1𝛾𝛾3
+ �0.5𝑐𝑐12−1�𝑦𝑦�3

𝑐𝑐12𝛾𝛾3
    (12) 

The linear part of the above force equation can be eliminated when γ = 1 (the free end of the spring is 

initially at the origin A). An approximate expression for the stiffness can be derived by differentiating 

equation (12) to give: 

𝐾𝐾�(𝑦𝑦�) ≈ (1 − 1
γ
) + 2γ𝑦𝑦�

𝑐𝑐1𝛾𝛾3
+ �1.5𝑐𝑐12−3�𝑦𝑦�2

𝑐𝑐12𝛾𝛾3
    (13) 

When γ = 1, the constant term in the above equation is eliminated. The effect that parameters 𝑐𝑐1 and γ 

have on the stiffness is presented in Figure 9, where stiffness curves have been produced for various 𝑐𝑐1 

and γ values. In Figure 9(a), 𝑐𝑐1 = 1 for all curves while in Figure 9(b), γ = 0.4. 

It can be seen that stiffness is negative in the vicinity of 𝑦𝑦� = 0 for a vast range of parameter γ values 

(the curves of Figure 9(a) have been confined within the plot limits for visualisation purposes). For the 

case where γ = 1, negative stiffness is achieved only when 𝑦𝑦� ≤ 0. In addition, lower c1 values lead to 

greater negative stiffness magnitudes, as Figure 9(b) shows. Analytical expressions can be derived to 

describe the relation between parameters 𝑐𝑐1 and γ that lead to zero stiffness. However, the complexity 

of these functions prohibits their presentation in this article. 

On the other hand, when using equation (9’), the expansion of the force – deflection function gives 
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𝐹𝐹(𝑥𝑥�, �̂�𝑧) ≈ −(−1 + 𝛾𝛾 + 𝑥𝑥�)(1 + 𝛾𝛾 + 𝑥𝑥�)�̂�𝑧 +
3
2

(𝛾𝛾 + 𝑥𝑥�)2�1− (𝛾𝛾 + 𝑥𝑥�)2�̂�𝑧2 

    + 1
2

(𝛾𝛾 + 𝑥𝑥�)2(−4 + 5(𝛾𝛾 + 𝑥𝑥�)2)�̂�𝑧3 ,    (14) 

where �̂�𝑧 = 𝑦𝑦� − �1 − (𝛾𝛾 + 𝑥𝑥�)2 [10]. By comparing equations (11) and (14), it can be seen that the 

nonlinear force expressions around the equilibrium positions can be tailored accordingly by choosing the 

equation that describes the path of motion. Additionally, the complexity of the forcing function is 

affected, since this differs when switching between the aforementioned equilibrium positions. In the 

case of equilibrium location (9’), equation (14) gives: 

𝐹𝐹(𝑤𝑤�) ≈ �
1 + 𝑐𝑐12(1− 𝛾𝛾2) + 𝛾𝛾�1 + 𝑐𝑐12(1− 𝛾𝛾2)

1 + 𝑐𝑐12
�𝑤𝑤� + 

𝛾𝛾 �
1 + 𝑐𝑐12 �1 − 1.5𝛾𝛾2 − 1.5𝛾𝛾�1 + 𝑐𝑐12(1− 𝛾𝛾2)�

𝑐𝑐1(1 + 𝑐𝑐12) �𝑤𝑤�2 + 

𝛾𝛾 �
�1+𝑐𝑐12(1−𝛾𝛾2)

𝑐𝑐12
+

𝛾𝛾�−2−2𝑐𝑐12+2.5𝑐𝑐12𝛾𝛾2−2.5𝛾𝛾�1+𝑐𝑐12(1−𝛾𝛾2)�

1+𝑐𝑐12
�𝑤𝑤�3   (15) 

where 𝑤𝑤� = 𝑦𝑦� −
−𝑐𝑐1𝛾𝛾−𝑐𝑐1�1+𝑐𝑐12(1−𝛾𝛾2)

1+𝑐𝑐12
. Again, it is found that the linear part of the above force equation 

can be eliminated when the following conditions are met (we note that only the positive roots are 

accepted): 

     𝛾𝛾 = ±1  and  𝛾𝛾 = ±
�1 +𝑐𝑐12

𝑐𝑐1
    (16) 

As 𝑐𝑐1 increases, γ asymptotically approaches unity. An approximate expression for the stiffness can be 

derived by differentiating equation (15) to give: 
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𝐾𝐾�(𝑤𝑤�) ≈ �
1 + 𝑐𝑐12(1 − 𝛾𝛾2) + 𝛾𝛾�1 + 𝑐𝑐12(1 − 𝛾𝛾2)

1 + 𝑐𝑐12
�+ 

2𝛾𝛾 �
1 + 𝑐𝑐12 �1 − 1.5𝛾𝛾2 − 1.5𝛾𝛾�1 + 𝑐𝑐12(1− 𝛾𝛾2)�

𝑐𝑐1(1 + 𝑐𝑐12) �𝑤𝑤� + 

3𝛾𝛾 �
�1+𝑐𝑐12(1−𝛾𝛾2)

𝑐𝑐12
+

𝛾𝛾�−2−2𝑐𝑐12+2.5𝑐𝑐12𝛾𝛾2−2.5𝛾𝛾�1+𝑐𝑐12(1−𝛾𝛾2)�

1+𝑐𝑐12
�𝑤𝑤�2  (17) 

The condition (16) eliminates the stiffness constant term. It was found that stiffness takes only positive 

values in the vicinity of this equilibrium position; therefore, there is no useful range of deflection for the 

achievement of negative stiffness. 

Finally, in the case of equilibrium location (10’), equation (14) gives: 

𝐹𝐹(𝑤𝑤�) ≈ �
1 + 𝑐𝑐12(1− 𝛾𝛾2) − 𝛾𝛾�1 + 𝑐𝑐12(1− 𝛾𝛾2)

1 + 𝑐𝑐12
�𝑤𝑤� + 

𝛾𝛾 �
1 + 𝑐𝑐12 �1 − 1.5𝛾𝛾2 + 1.5𝛾𝛾�1 + 𝑐𝑐12(1− 𝛾𝛾2)�

𝑐𝑐1(1 + 𝑐𝑐12) �𝑤𝑤�2 + 

(−1 − 1.
𝑐𝑐12

+ 1.5𝛾𝛾2 +
2�1 +𝑐𝑐12(1 −𝛾𝛾2)(0.5 +𝑐𝑐12(0.5 −1.25𝛾𝛾2))(−𝛾𝛾+�1 +𝑐𝑐12(1 −𝛾𝛾2))

𝑐𝑐12(1. +𝑐𝑐12)
)𝑤𝑤�3 (18) 

where 𝑤𝑤� = 𝑦𝑦� −
−𝑐𝑐1𝛾𝛾+𝑐𝑐1�1+𝑐𝑐12(1−𝛾𝛾2)

1+𝑐𝑐12
. The conditions of equation (16) are valid in this case, as well as for 

the elimination of the linear part of the force. An approximate expression for the stiffness is derived by 

differentiating equation (18) to give: 

𝐾𝐾�(𝑤𝑤�) ≈ �
1 + 𝑐𝑐12(1 − 𝛾𝛾2) − 𝛾𝛾�1 + 𝑐𝑐12(1 − 𝛾𝛾2)

1 + 𝑐𝑐12
�+ 
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2𝛾𝛾 �
1 + 𝑐𝑐12 �1 − 1.5𝛾𝛾2 + 1.5𝛾𝛾�1 + 𝑐𝑐12(1− 𝛾𝛾2)�

𝑐𝑐1(1 + 𝑐𝑐12) �𝑤𝑤� + 

  3(−1− 1.
𝑐𝑐12

+ 1.5𝛾𝛾2 + 2
�1 +𝑐𝑐12(1 −𝛾𝛾2)(0.5 +𝑐𝑐12(0.5 −1.25𝛾𝛾2))(−𝛾𝛾+�1 +𝑐𝑐12(1 −𝛾𝛾2))

𝑐𝑐12(1. +𝑐𝑐12)
)𝑤𝑤�2 (19) 

The effect that parameters 𝑐𝑐1 and γ have on the stiffness around this equilibrium position is considered 

in Figure 10, where stiffness curves have been produced for various 𝑐𝑐1 and γ values. In Figure 10(a) it 

was assumed that 𝑐𝑐1 = 1 for all curves, while in Figure 10(b) it was assumed that γ = 0.4. It is only for γ = 

0.4 that negative stiffness is achieved around this equilibrium position for the graphs of Figure 10(a). 

However, by decreasing the value of constant 𝑐𝑐1, the useful range of deflection 𝑤𝑤�  around which 

negative stiffness is achieved increases (Figure 10(b)). Finally, by comparing Figures 9 and 10, it can be 

concluded that the lowest negative stiffness values are met in the vicinity of the equilibrium position 

𝑦𝑦� = 0. 

3. Concluding Remarks 

A new methodology to tailor negative nonlinear stiffness has been presented in this paper, based on the 

path of motion of the free end of a linear spring. This includes the realization of springs with essential 

negative stiffness nonlinearity, i.e. negative stiffness with no linear part. Three different curves have 

been proposed for this purpose, gradually increasing the complexity of the design: linear, quadratic and 

cubic paths of motion. It has been found that the extent of the deflection region where negative 

stiffness is achieved varies according to the curve type/participating constants, as well as the initial state 

of spring length. Additionally, the stability properties and the force-deflection functions around the 

equilibrium positions of the system are also affected. Analytical expressions for the overall stiffness in 

the vicinity of those equilibria have been produced for the case of linear path of motion, leading to the 

identification of useful deflection regions in terms of achievement of negative stiffness. Future research 
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plans should address the effect of the inaccuracies induced due to manufacturing errors when 

constructing the examined paths of motion. An attractive configuration to implement the methodology 

presented in this work is potentially a slider mechanism. However, the profound implication is the 

development of friction in the contact area between the moving spring end and the groove. The effect 

of the friction force opposing the spring force could potentially lead to quasi-zero stiffness 

characteristics and requires a comprehensive analysis. Finally, experimental demonstration of the 

numerical work presented will be explored to validate the methodology presented, as part of future 

research activities. 
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Figure Captions 

Figure 1: Schematic representation of the proposed design exhibiting negative stiffness. 

Figure 2: Examined paths of motion for the free end of the linear spring: (a) 𝑦𝑦 = 𝑐𝑐1𝑥𝑥, (b) 𝑦𝑦 = 𝑐𝑐2𝑥𝑥2 and (c) 
𝑦𝑦 = 𝑐𝑐3𝑥𝑥3. 

Figure 3: Force-deflection characteristics of the system for the examined paths of motion of the linear 
spring’s free end: (a) 𝑦𝑦 = 𝑐𝑐1𝑥𝑥, (b) 𝑦𝑦 = 𝑐𝑐2𝑥𝑥2 and (c) 𝑦𝑦 = 𝑐𝑐3𝑥𝑥3. 

Figure 4: Non-dimensional stiffness of the examined system, corresponding to the cases of Figure 3:      
(a) 𝑦𝑦 = 𝑐𝑐1𝑥𝑥, (b) 𝑦𝑦 = 𝑐𝑐2𝑥𝑥2 and (c) 𝑦𝑦 = 𝑐𝑐3𝑥𝑥3. 

Figure 5: Comparison of the non-dimensional stiffness characteristics of the examined system to those 
of two oblique springs [10] for (a) γ = 0.1 and (b) γ = 0.4. 

Figure 6: (a) Force and (b) stiffness characteristics of the system when 𝑦𝑦 = 𝑐𝑐3𝑥𝑥3 (𝑐𝑐3= 100, 300 and 500). 

Figure 7: Space of the equilibrium positions 𝑦𝑦�2 and 𝑦𝑦�3, when 𝑦𝑦 = 𝑐𝑐1𝑥𝑥. 

Figure 8: 𝜕𝜕
2𝑃𝑃

𝜕𝜕𝑦𝑦�2
 - 𝑦𝑦� plots of the system when 𝑦𝑦 = 𝑐𝑐1𝑥𝑥 (𝑐𝑐1 = 1) for γ = 0.4 and γ = 0.6.  

Figure 9: Stiffness variation around equilibrium position 𝑦𝑦� = 0 with respect to (a) γ and (b) 𝑐𝑐1. 

Figure 10: Stiffness variation around equilibrium position 𝑦𝑦� = −�1 − (𝛾𝛾 + 𝑥𝑥�)2 with respect to (a) γ and 
(b) 𝑐𝑐1. 
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ŷ

cubic path

(a)

 

Fig5a.tif 

 

  



Corresponding author: S. Theodossiades Paper MD-12-1465 25 
 

-1 -0.5 0 0.5 1

-4

-2

0

2

4

two oblique springs

quadratic path

linear path

K̂

ŷ
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