110,411 research outputs found
Factors Influencing the Predicted Performance of Advanced Propeller Designs
The assumptions on which conventional propeller aerodynamic performance analyses are based can be seriously violated when advanced high speed propellers are analyzed. Studies were performed using a lifting line representation for the propeller to determine the sensitivity of predicted propeller performance to various assumptions in the analysis. Items studied include the method of determining blade section lift and the effects of blade section drag, camber and blade sweep. The effects of nonuniform flow into the propeller and compressibility were also studied. Comparisons of analytical and experimental results are presented to demonstrate the overall validity of the results
Turbulence Time Series Data Hole Filling using Karhunen-Loeve and ARIMA methods
Measurements of optical turbulence time series data using unattended
instruments over long time intervals inevitably lead to data drop-outs or
degraded signals. We present a comparison of methods using both Principal
Component Analysis, which is also known as the Karhunen--Loeve decomposition,
and ARIMA that seek to correct for these event-induced and mechanically-induced
signal drop-outs and degradations. We report on the quality of the correction
by examining the Intrinsic Mode Functions generated by Empirical Mode
Decomposition. The data studied are optical turbulence parameter time series
from a commercial long path length optical anemometer/scintillometer, measured
over several hundred metres in outdoor environments.Comment: 8 pages, 9 figures, submitted to ICOLAD 2007, City University,
London, U
Gestalt Theory in Visual Screen Design — A New Look at an old subject
Although often presented as a single basis for educational visual screen design, Gestalt theory is not a single small set of visual principles uniformly applied by all designers. In fact, it appears that instructional visual design literature often deals with only a small set of Gestalt laws. In this project Gestalt literature was consulted to distil the most relevant Gestalt laws for educational visual screen design. Eleven laws were identified. They deal with balance/symmetry, continuation, closure, figure-ground, focal point, isomorphic correspondence, prÅ gnanz, proximity, similarity, simplicity, and unity/harmony. To test the usefulness of these laws in visual screen design they were applied to the redesign of an instructional multimedia application, 'WoundCare', designed to teach nursing students wound management. The basic text-based screens in the original WoundCare application were replaced with graphical user interface screens, that were designed according to these principles. The new screen designs were then evaluated by asking students and others to compare the designs. The viewers were also asked to rate directly the value of using the eleven Gestalt design principles in the redesign, both for improving the product's appearance and improving its value for learning. The evaluation results were overwhelmingly positive. Both the new design and the value of applying the eleven Gestalt laws to improve learning were strongly supported by the students' opinions. However, some differences in the value of applying particular Gestalt laws to the interface design were identified and this forms a useful direction for future research
On numerical integration and computer implementation of viscoplastic models
Due to the stringent design requirement for aerospace or nuclear structural components, considerable research interests have been generated on the development of constitutive models for representing the inelastic behavior of metals at elevated temperatures. In particular, a class of unified theories (or viscoplastic constitutive models) have been proposed to simulate material responses such as cyclic plasticity, rate sensitivity, creep deformations, strain hardening or softening, etc. This approach differs from the conventional creep and plasticity theory in that both the creep and plastic deformations are treated as unified time-dependent quantities. Although most of viscoplastic models give better material behavior representation, the associated constitutive differential equations have stiff regimes which present numerical difficulties in time-dependent analysis. In this connection, appropriate solution algorithm must be developed for viscoplastic analysis via finite element method
A computational method for viscous incompressible flows
An implicit, finite-difference procedure for numerically solving viscous incompressible flows is presented. The pressure-field solution is based on the pseudocompressibility method in which a time-derivative pressure term is introduced into the mass-conservation equation to form a set of hyperbolic equations. The pressure-wave propagation and the spreading of the viscous effect is investigated using simple test problems. Computed results for external and internal flows are presented to verify the present method which has proved to be very robust in simulating incompressible flows
Microwave integrated circuit for Josephson voltage standards
A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained
A finite element stress analysis of spur gears including fillet radii and rim thickness effects
Spur gear stress analysis results are presented for a variety of loading conditions, support conditions, fillet radii, and rim thickness. These results are obtained using the SAP IV finite-element code. The maximum stresses, occurring at the root surface, substantially increase with decreasing rim thickness for partially supported rims (that is, with loose-fitting hubs). For fully supported rims (that is, with tight-fitting hubs), the root surface stresses slightly decrease with decreasing rim thickness. The fillet radius is found to have a significant effect upon the maximum stresses at the root surface. These stresses increase with increasing fillet radius. The fillet radius has little effect upon the internal root section stresses
- …