3 research outputs found

    Mapping of static magnetic fields near the surface of mobile phones

    Get PDF
    Whether the use of mobile phones (MP) represents a health hazard is still under debate. As part of the attempts to resolve this uncertainty, there has been an extensive characterization of the electromagnetic fields MP emit and receive. While the radiofrequencies (RF) have been studied exhaustively, the static magnetic fields (SMF) have received much less attention, regardless of the fact there is a wealth of evidence demonstrating their biological effects. We performed 2D maps of the SMF at several distances from the screen of 5 MP (models between 2013 and 2018) using a tri-axis magnetometer. We built a mathematical model to fit our measurements, extrapolated them down to the phones’ screen, and calculated the SMF on the skin of a 3D head model, showing that exposure is in the µT to mT range. Our literature survey prompts the need of further research not only on the biological effects of SMF and their gradients, but also on their combination with extremely low frequency (ELF) and RF fields. The study of combined fields (SMF, ELF, and RF) as similar as possible to the ones that occur in reality should provide a more sensible assessment of potential risks.Fil: Zastko, L.. Cancer Research Institute Of Slovak Academy Of Sciences; EslovaquiaFil: Makinistian, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Tvarozná, A.. Cancer Research Institute Of Slovak Academy Of Sciences; EslovaquiaFil: Ferreyra, F. L.. Universidad Nacional de San Luis; ArgentinaFil: Belyaev, I.. Cancer Research Institute Of Slovak Academy Of Sciences; Eslovaqui

    Extremely low frequency magnetic fields emitted by cell phones

    Get PDF
    Cell phones expose significant parts of the human brain and head to extremely low frequency (ELF) magnetic fields (MF) classified by the IARC as a 2B carcinogen. ELF MF was measured on the front and back sides of 15 cell phones in standby, speaking, and listening modes for 2G and 3G standards in two frequency bands, LF1: 5 Hz–200 Hz and LF2: 120 Hz—10 kHz. The highest MF value was 70.03 µT (RMS) in LF1 (2G, listening mode, front side) and 12.67 µT (RMS) in LF2 (2G, speaking mode, front side). The 3G cell phones consistently emitted a lower ELF MF compared to the 2G ones. The exposure to ELF MF was also simulated at various locations (head, thorax, pelvis) using the CST Studio Suite. The simulations revealed 8.45 µT, 7.5 µT, and 6.09 µT in the middle of the head (midbrain), 3.89 µT, 3.98 µT, and 2.83 µT for the middle of the thorax (heart), and 2.03 µT, 1.96 µT, and 1.56 µT in the middle of the pelvis (scrotum) for 10 Hz, 50 Hz, and 200 Hz, respectively. These values are comparable to those reported to induce biological and health effects, including those related to carcinogenesis. The results can be used in future studies concerning the ELF exposure or the combined effects of electromagnetic fields of radiofrequency and ELF

    Static magnetic fields from earphones: Detailed measurements plus some open questions

    No full text
    Earphones (EP) are a worldwide, massively adopted product, assumed to be innocuous provided the recommendations on sound doses limits are followed. Nevertheless, sound is not the only physical stimulus that derives from EP use, since they include a built-in permanent magnet from which a static magnetic field (SMF) originates. We performed 2D maps of the SMF at several distances from 6 models of in-ear EP, showing that they produce an exposure that spans from ca. 20 mT on their surface down to tens of μT in the inner ear. The numerous reports of bioeffects elicited by SMF in that range of intensities (applied both acutely and chronically), together with the fact that there is no scientific consensus over the possible mechanisms of interaction with living tissues, suggest that caution could be recommendable. In addition, more research is warranted on the possible effects of the combination of SMF with extremely low frequency and radiofrequency fields, which has so far been scarcely studied. Overall, while several open questions about bioeffects of SMF remain to be addressed by the scientific community, we find sensible to suggest that the use of air-tube earphones is probably the more conservative, cautious choice.Fil: Makinistian, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Zastko, L.. University Science Park for Biomedicine; EslovaquiaFil: Tvarožná, A.. University Science Park for Biomedicine; EslovaquiaFil: Días, L. E.. Universidad Nacional de San Luis; ArgentinaFil: Belyaev, I.. University Science Park for Biomedicine; Eslovaqui
    corecore