58,401 research outputs found

    Binomial coefficients, Catalan numbers and Lucas quotients

    Full text link
    Let pp be an odd prime and let a,ma,m be integers with a>0a>0 and m≢0(modp)m \not\equiv0\pmod p. In this paper we determine ∑k=0pa−1(2kk+d)/mk\sum_{k=0}^{p^a-1}\binom{2k}{k+d}/m^k mod p2p^2 for d=0,1d=0,1; for example, ∑k=0pa−1(2kk)mk≡(m2−4mpa)+(m2−4mpa−1)up−(m2−4mp)(modp2),\sum_{k=0}^{p^a-1}\frac{\binom{2k}k}{m^k}\equiv\left(\frac{m^2-4m}{p^a}\right)+\left(\frac{m^2-4m}{p^{a-1}}\right)u_{p-(\frac{m^2-4m}{p})}\pmod{p^2}, where (−)(-) is the Jacobi symbol, and {un}n⩾0\{u_n\}_{n\geqslant0} is the Lucas sequence given by u0=0u_0=0, u1=1u_1=1 and un+1=(m−2)un−un−1u_{n+1}=(m-2)u_n-u_{n-1} for n=1,2,3,…n=1,2,3,\ldots. As an application, we determine ∑0<k<pa, k≡r(modp−1)Ck\sum_{0<k<p^a,\, k\equiv r\pmod{p-1}}C_k modulo p2p^2 for any integer rr, where CkC_k denotes the Catalan number (2kk)/(k+1)\binom{2k}k/(k+1). We also pose some related conjectures.Comment: 24 pages. Correct few typo

    Zero-field magnetization reversal of two-body Stoner particles with dipolar interaction

    Get PDF
    Nanomagnetism has recently attracted explosive attention, in particular, because of the enormous potential applications in information industry, e.g. new harddisk technology, race-track memory[1], and logic devices[2]. Recent technological advances[3] allow for the fabrication of single-domain magnetic nanoparticles (Stoner particles), whose magnetization dynamics have been extensively studied, both experimentally and theoretically, involving magnetic fields[4-9] and/or by spin-polarized currents[10-20]. From an industrial point of view, important issues include lowering the critical switching field HcH_c, and achieving short reversal times. Here we predict a new technological perspective: HcH_c can be dramatically lowered (including Hc=0H_c=0) by appropriately engineering the dipole-dipole interaction (DDI) in a system of two synchronized Stoner particles. Here, in a modified Stoner-Wohlfarth (SW) limit, both of the above goals can be achieved. The experimental feasibility of realizing our proposal is illustrated on the example of cobalt nanoparticles.Comment: 5 pages, 4 figure

    Quantum state swapping via qubit network with Hubbard interaction

    Full text link
    We study the quantum state transfer (QST) in a class of qubit network with on-site interaction, which is described by the generalized Hubbard model with engineered couplings. It is proved that the system of two electrons with opposite spins in this quantum network of NN sites can be rigorously reduced into NN one dimensional engineered single Bloch electron models with central potential barrier. With this observation we find that such system can perform a perfect QST, the quantum swapping between two distant electrons with opposite spins. Numerical results show such QST and the resonant-tunnelling for the optimal on-site interaction strengths.Comment: 4 pages, 3 figure
    • …
    corecore