8 research outputs found

    Role of Ectonucleotidases in the Synapse Formation During Brain Development: Physiological and Pathological Implications

    No full text
    Extracellular adenine nucleotides and nucleosides, such as ATP and adenosine, are among the most recently identified and least investigated diffusible signaling factors that contribute to the structural and functional remodeling of the brain, both during embryonic and postnatal development. Their levels in the extracellular milieu are tightly controlled by various ectonucleotidases: ectonucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (AP), ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'-nucleotidase (eN). During central nervous system development and in adulthood all ectonucleotidases have diverse expression pattern, cell specific localization and function. Formation, maturation, and refinement of synaptic contacts are influenced by neurotransmitters and neuromodulators, and control of extracellular adenine nucleotide levels by ectonucleotidases are important for understanding the role of purinergic signaling in developing tissues and potential targets in developmental disorders such as autism

    The Glial Differentiation Factor Nuclear Factor One B (Nfib) Induces Differentiation and Inhibits Growth of Glioblastoma.

    No full text
    International audienceThe molecule CD90 is a N-glycosylated, glycophosphatidylinositol anchored cell surface protein, originally described on thymocytes. CD90 has been considered as a surrogate marker for a variety of stem cells and has recently been reported on glioblastoma stem cells. CD90 is also expressed on T lymphocytes, endothelial cells, fibroblasts and neurons. The function of CD90 is not fully elucidated. CD90 has been involved in cell-cell and cell-matrix interactions, in neurite outgrowth, T cell activation and apoptosis. In this study, we confirmed the expression of CD90 on human glioblastoma stem-like cells from serum-free neurosphere cultures. We also observed RNA and protein CD90 expression on primary cell lines from FSC-containing culture (adherent cell lines) and on freshly prepared glioblastoma specimen. In order to study the function of CD90 on glioblastoma cells, we used a silencing strategy to decrease the expression of CD90 on the immortalized U251 cell line. We then compared the viability, the tumor growth and the migration property of the wild-type CD90+ U251 cells and CD90 down-regulated U251 clones. The decrease of CD90 expression did not affect the viability and the tumor growth of U251 cells. In contrast, down-regulation of CD90 mediated the decreased ability of tumor cell migration using both scratch wound healing and boyden chamber migration assays. Experiments are currently on going to test the effect of CD90 expression on tumorigenicity in mice models. In total, this study might lead to better understand the role of CD90 on the pathology in particular in term of tumor migration/invasion of human glioblastoma

    Phospholipase D: Enzymology, Functionality, and Chemical Modulation

    No full text

    Role of Ectonucleotidases in Synapse Formation During Brain Development: Physiological and Pathological Implications

    No full text

    Cellular function and molecular structure of ecto-nucleotidases

    No full text
    corecore