11,790 research outputs found

    Density dependent spin susceptibility and effective mass in interacting quasi-two dimensional electron systems

    Full text link
    Motivated by recent experimental reports, we carry out a Fermi liquid many-body calculation of the interaction induced renormalization of the spin susceptibility and effective mass in realistic two dimensional (2D) electron systems as a function of carrier density using the leading-order `ladder-bubble' expansion in the dynamically screened Coulomb interaction. Using realistic material parameters for various semiconductor-based 2D systems, we find reasonable quantitative agreement with recent experimental susceptibility and effective mass measurements. We point out a number of open questions regarding quantitative aspects of the comparison between theory and experiment in low-density 2D electron systems

    Short-time critical dynamics and universality on a two-dimensional Triangular Lattice

    Full text link
    Critical scaling and universality in short-time dynamics for spin models on a two-dimensional triangular lattice are investigated by using Monte Carlo simulation. Emphasis is placed on the dynamic evolution from fully ordered initialstates to show that universal scaling exists already in the short-time regime in form of power-law behavior of the magnetization and Binder cumulant. The results measured for the dynamic and static critical exponents, Īø\theta, zz, Ī²\beta and Ī½\nu, confirm explicitly that the Potts models on the triangular lattice and square lattice belong to the same universality class. Our critical scaling analysis strongly suggests that the simulation for the dynamic relaxation can be used to determine numerically the universality.Comment: LaTex, 11 pages and 10 figures, to be published in Physica

    Hairpin RF Resonators for Transceiver Arrays with High Inter-channel Isolation and B1 Efficiency at Ultrahigh Field 7T MR Imaging

    Full text link
    Electromagnetic decoupling among a close-fitting or high-density transceiver RF array elements is required to maintain the integrity of the magnetic flux density from individual channel for enhanced performance in detection sensitivity and parallel imaging. High-impedance RF coils have demonstrated to be a prominent design method to circumvent these coupling issues. Yet, inherent characteristics of these coils have ramification on the B1 field efficiency and SNR. In this work, we propose a hairpin high impedance RF resonator design for highly decoupled multichannel transceiver arrays at ultrahigh magnetic fields. Due to the high impedance property of the hairpin resonators, the proposed transceiver array can provide high decoupling performance without using any dedicated decoupling circuit among the resonant elements. Because of elimination of lumped inductors in the resonator circuit, higher B1 field efficiency in imaging subjects can be expected. In order to validate the feasibility of the proposed hairpin RF coils, systematical studies on decoupling performance, field distribution, and SNR are performed, and the results are compared with those obtained from existing high-impedance RF coil, e.g., "self-decoupled RF coil". To further investigate its performance, an 8-channel head coil array using the proposed hairpin resonators loaded with a cylindrical phantom is designed, demonstrating a 19 % increase of the B1+ field intensity compared to the "self-decoupled" coils at 7T. Furthermore, the characteristics of the hairpin RF coils are evaluated using a more realistic human head voxel model numerically. The proposed hairpin RF coil provides excellent decoupling performance and superior RF magnetic field efficiency compared to the self-decoupled high impedance coils. Bench test of a pair of fabricated hairpin coils prove to be in good accordance with numerical results.Comment: 10 pages, 12 figures, 2 tables. Second version: Add bench test results and One dimensional profile of the simulated B1

    Optically trapped quasi-two-dimensional Bose gases in random environment: quantum fluctuations and superfluid density

    Full text link
    We investigate a dilute Bose gas confined in a tight one-dimensional (1D) optical lattice plus a superimposed random potential at zero temperature. Accordingly, the ground state energy, quantum depletion and superfluid density are calculated. The presence of the lattice introduces a crossover to the quasi-2D regime, where we analyze asymptotically the 2D behavior of the system, particularly the effects of disorder. We thereby offer an analytical expression for the ground state energy of a purely 2D Bose gas in a random potential. The obtained disorder-induced normal fluid density nnn_n and quantum depletion ndn_d both exhibit a characteristic 1/lnā”(1/n2Da2D2)1/\ln\left(1/n_{2D}a_{2D}^{2}\right) dependence. Their ratio nn/ndn_n/n_d increases to 22 compared to the familiar 4/34/3 in lattice-free 3D geometry, signifying a more pronounced contrast between superfluidity and Bose-Einstein condensation in low dimensions. Conditions for possible experimental realization of our scenario are also proposed.Comment: 8 pages, 2 figure

    A New Comparative Definition of Community and Corresponding Identifying Algorithm

    Full text link
    In this paper, a new comparative definition for community in networks is proposed and the corresponding detecting algorithm is given. A community is defined as a set of nodes, which satisfy that each node's degree inside the community should not be smaller than the node's degree toward any other community. In the algorithm, the attractive force of a community to a node is defined as the connections between them. Then employing attractive force based self-organizing process, without any extra parameter, the best communities can be detected. Several artificial and real-world networks, including Zachary Karate club network and College football network are analyzed. The algorithm works well in detecting communities and it also gives a nice description for network division and group formation.Comment: 11 pages, 4 fihure

    Creation of the two isoforms of rodent NKG2D was driven by a B1 retrotransposon insertion

    Get PDF
    The mouse gene for the natural killer (NK) cell-activating receptor Nkg2d produces two protein isoforms, NKG2D-S and NKG2D-L, which differ by 13 amino acids at the N-terminus and have different signalling capabilities. These two isoforms are produced through differential splicing, but their regulation has not been investigated. In this study, we show that rat Nkg2d has the same splicing pattern as that of the mouse, and we mapped transcriptional start sites in both species. We found that the splice forms arise from alternative promoters and that the NKG2D-L promoter is derived from a rodent B1 retrotransposon that inserted before mouseā€“rat divergence. This B1 insertion is associated with loss of a nearby splice acceptor site that subsequently allowed creation of the short NKG2D isoform found in mouse but not human. Transient reporter assays indicate that the B1 element is a strong promoter with no inherent lymphoid tissue-specificity. We have also identified different binding sites for the ETS family member GABP within both the mouse and rat B1 elements that are necessary for high-promoter activity and for full Nkg2d-L expression. These findings demonstrate that a retroelement insertion has led to gene-regulatory change and functional diversification of rodent NKG2D
    • ā€¦
    corecore