17,060 research outputs found

    Coupling Josephson qubits via a current-biased information bus

    Full text link
    Josephson qubits without direct interaction can be effectively coupled by sequentially connecting them to an information bus: a current-biased large Josephson junction treated as an oscillator with adjustable frequency. The coupling between any qubit and the bus can be controlled by modulating the magnetic flux applied to that qubit. This tunable and selective coupling provides two-qubit entangled states for implementing elementary quantum logic operations, and for experimentally testing Bell's inequality.Comment: 10 pages, 1 figure. submitte

    Large-Scale Domain Adaptation via Teacher-Student Learning

    Full text link
    High accuracy speech recognition requires a large amount of transcribed data for supervised training. In the absence of such data, domain adaptation of a well-trained acoustic model can be performed, but even here, high accuracy usually requires significant labeled data from the target domain. In this work, we propose an approach to domain adaptation that does not require transcriptions but instead uses a corpus of unlabeled parallel data, consisting of pairs of samples from the source domain of the well-trained model and the desired target domain. To perform adaptation, we employ teacher/student (T/S) learning, in which the posterior probabilities generated by the source-domain model can be used in lieu of labels to train the target-domain model. We evaluate the proposed approach in two scenarios, adapting a clean acoustic model to noisy speech and adapting an adults speech acoustic model to children speech. Significant improvements in accuracy are obtained, with reductions in word error rate of up to 44% over the original source model without the need for transcribed data in the target domain. Moreover, we show that increasing the amount of unlabeled data results in additional model robustness, which is particularly beneficial when using simulated training data in the target-domain

    Quantum tomography for solid state qubits

    Full text link
    We propose a method for the tomographic reconstruction of qubit states for a general class of solid state systems in which the Hamiltonians are represented by spin operators, e.g., with Heisenberg-, XXZXXZ-, or XY- type exchange interactions. We analyze the implementation of the projective operator measurements, or spin measurements, on qubit states. All the qubit states for the spin Hamiltonians can be reconstructed by using experimental data.Comment: 4 page

    Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland

    Get PDF
    Evapotranspiration (ET) from the wetland of the Yellow River Delta (YRD) is one of the important components in the water cycle, which represents the water consumption by the plants and evaporation from the water and the non-vegetated surfaces. Reliable estimates of the total evapotranspiration from the wetland is useful information both for understanding the hydrological process and for water management to protect this natural environment. Due to the heterogeneity of the vegetation types and canopy density and of soil water content over the wetland (specifically over the natural reserve areas), it is difficult to estimate the regional evapotranspiration extrapolating measurements or calculations usually done locally for a specific land cover type. Remote sensing can provide observations of land surface conditions with high spatial and temporal resolution and coverage. In this study, a model based on the Energy Balance method was used to calculate daily evapotranspiration (ET) using instantaneous observations of land surface reflectance and temperature from MODIS when the data were available on clouds-free days. A time series analysis algorithm was then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series due to clouds. A detailed vegetation classification map was used to help identifying areas of various wetland vegetation types in the YRD wetland. Such information was also used to improve the parameterizations in the energy balance model to improve the accuracy of ET estimates. This study showed that spatial variation of ET was significant over the same vegetation class at a given time and over different vegetation types in different seasons in the YRD wetlan

    Bimodal Distribution of Sulfuric Acid Aerosols in the Upper Haze of Venus

    Get PDF
    The upper haze (UH) of Venus is variable on the order of days and it is populated by two particle modes. We use a 1D microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two size modes and whether their observed variability are due to cloud top vertical transient winds. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets that then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and cannot reproduce the observed bimodal size distribution. The mass transport enabled by cloud top transient winds are able to generate a bimodal size distribution in a time scale consistent with observations. Sedimentation and convection in the middle and lower clouds causes the formation of large mode 2 and mode 3 particles. Evaporation of these particles below the clouds creates a local sulfuric acid vapor maximum that causes upwelling of sulfuric acid back into the clouds. If the polysulfur condensation nuclei are small and their production rate is high, coagulation of small droplets onto larger droplets in the middle cloud may result in sulfuric acid "rain" below the clouds once every few Earth months. Reduction of the polysulfur condensation nuclei production rate destroys this oscillation and reduces the mode 1 particle abundance in the middle cloud by two orders of magnitude, though it better reproduces the sulfur-to-sulfuric-acid mass ratio in the cloud and haze droplets. In general we find satisfactory agreement between our results and observations, though improvements could be made by incorporating sulfur microphysics.Comment: 62 pages, 18 figures, 1 table. Accepted for publication in Icaru
    corecore