7,170 research outputs found

    Transition behavior of k-surface from hyperbola to ellipse

    Get PDF
    The transition behavior of the k-surface of a lossy anisotropic indefinite slab is investigated. It is found that, if the material loss is taken into account, the k-surface does not show a sudden change from hyperbola to the ellipse when one principle element of the permittivity tensor changes from negative to positive. In fact, after introducing a small material loss, the shape of the k-surface can be a combination of a hyperbola and an ellipse, and a selective high directional transmission can be obtained in such a slab

    Fine-grained action recognition by motion saliency and mid-level patches

    Get PDF
    Effective extraction of human body parts and operated objects participating in action is the key issue of fine-grained action recognition. However, most of the existing methods require intensive manual annotation to train the detectors of these interaction components. In this paper, we represent videos by mid-level patches to avoid the manual annotation, where each patch corresponds to an action-related interaction component. In order to capture mid-level patches more exactly and rapidly, candidate motion regions are extracted by motion saliency. Firstly, the motion regions containing interaction components are segmented by a threshold adaptively calculated according to the saliency histogram of the motion saliency map. Secondly, we introduce a mid-level patch mining algorithm for interaction component detection, with object proposal generation and mid-level patch detection. The object proposal generation algorithm is used to obtain multi-granularity object proposals inspired by the idea of the Huffman algorithm. Based on these object proposals, the mid-level patch detectors are trained by K-means clustering and SVM. Finally, we build a fine-grained action recognition model using a graph structure to describe relationships between the mid-level patches. To recognize actions, the proposed model calculates the appearance and motion features of mid-level patches and the binary motion cooperation relationships between adjacent patches in the graph. Extensive experiments on the MPII cooking database demonstrate that the proposed method gains better results on fine-grained action recognition

    Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation

    Full text link
    We explore the effect of spatiotemporally varying substrate temperature profiles on the dynamics and resulting reaction rate enhancement for the catalytic oxidation of CO on Pt(110). The catalytic surface is "addressed" by a focused laser beam whose motion is computer-controlled. The averaged reaction rate is observed to undergo a characteristic maximum as a function of the speed of this moving laser spot. Experiments as well as modelling are used to explore and rationalize the existence of such an optimal laser speed.Comment: 9 pages, 12 figures, submitted to Phys. Rev.

    Challenges in multi-scale hard rock behaviour evaluation at deep underground excavations

    Get PDF
    As a consequence of rapid growing trend of resource extraction in world, depth of excavations for resource exploitation increases. Eventually excavations faces with transition from low stress to high stress condition. In this paper, comprehensive aspects on rock behaviour at deep underground excavation were investigated. The state of art of rock behaviour at micro- meso- and macro-scale were discussed and relevant challenges along with achieved knowledge, experiences, and research results were presented. At micro-scale, research results revealed that, apart from chemical bonding, rock behaviour significantly influenced by deficiencies such as; particle-crystal boundaries, heterogeneity, pores and micro-cracks, which reduces the rock strength 2-3 order of magnitude. Granite SEM images proves the deficiencies between crystals, micro-cracks and pores at each crystal, and weakness and foliation of mica components. When stresses applied on specimen, new tensile cracks nucleated and initiated from the edge of existing micro-cracks, and rate of crack propagation depends on the differential stress level. At meso-scale, true triaxial testing makes it possible to apply different stress paths in the ranges of ground in situ stresses, concentrated stresses and even dynamic loads. Careful assessment of the full stress–strain curves of the true triaxial test results of granite and conventional triaxial test results of Marble shows that rock mechanical properties such as magnitude of linear elasticity, ductility domain, peak strength value, ranges of brittleness, and residual strength level significantly differs with changing confining stresses. The rock stress – strain behaviour variation were categorised to four distinct stages consisting; 1) Elastic-stable micro-cracking, 2) Stable - unstable micro-cracking, 3) Unstable micro-cracking-brittle failure, and 4) Brittle failure-residual strength. The ranges of rock behaviour at each stage with different confining stresses were illustrated, which could be used as input for mechanical parameters in design analysis. At macro-scale, counteraction between ‘Rock Mass Composition (RMC)’, ‘Active Stress Condition (ASC)’, and ‘Excavation Method, Size and Orientation (EMSO)’ to estimate the ‘Rock Mass Behaviour (RMB)’ were discussed and presented as a verbal equation. To reduce the sudden failure risk, a micro-seismic monitoring system were designed and implemented for perdition and warning of failure and evacuation in timely manner. To verify the presented approaches, rock mass behaviour and failure mechanisms were illustrated in a deep gold mine in Western Australia. To manage the ground behaviour; considering the static and dynamic loading and interlocked nature of rock masses at deep underground excavations, the ratio of “Ground energy demand” to “support energy absorption capacity” is mostly used for stability evaluation. Finally, it should be noted that, the geomechanics at general and deep underground geomechanics specifically is a developing field due to incapability to achieve proper ground characteristics, huge number of variables and their coupled interactions, and incompetence in analysis them properly. Therefore, the results from current analysis should not be taken as granted and always solid engineering judgement must involve in interpretation and design. It is also hoped that future development in sophisticated ground exploration technologies along with advances in computation science will assist geomechanics engineers to mature their knowledge of rock mass behaviour and safe and economic design in engineering activities
    corecore