7,015 research outputs found
Air and water flows in a vertical sand column
The unsteady state drainage of water from a vertical sand column with and without a finer layer on the top was studied theoretically and experimentally to investigate the airflow generated by the finer layer. The sand column, saturated at its lower portion and initially in the condition of hydrostatic equilibrium, is drained at its bottom at constant head. The results show that significant vacuum can be generated in the vadose zone of the column with a finer layer on the top. The vacuum increases quickly in the earlier stage of the drainage, reaches a maximum, and gradually becomes zero. Because of the effect of the vacuum in the vadose zone, water is held in and the cumulative outflow from the column with the finer layer is much smaller than without the layer during most of the drainage process. Ordinary differential equations (ODE), which require only saturated hydraulic properties of the porous media, are derived to predict the location of the surface of saturation and vacuum in the vadose zone in air-water two-phase flow. The solutions of ODE match very satisfactorily with the experimental data and give better results than TOUGH2. Copyright 2011 by the American Geophysical Union.published_or_final_versio
The upper critical field and its anisotropy in LiFeAs
The upper critical field of LiFeAs single crystals has
been determined by measuring the electrical resistivity using the facilities of
pulsed magnetic field at Los Alamos. We found that of LiFeAs
shows a moderate anisotropy among the layered iron-based superconductors; its
anisotropic parameter monotonically decreases with decreasing
temperature and approaches as . The upper
critical field reaches 15T () and 24.2T () at
1.4K, which value is much smaller than other iron-based high
superconductors. The temperature dependence of can be
described by the Werthamer-Helfand-Hohenberg (WHH) method, showing orbitally
and (likely) spin-paramagnetically limited upper critical field for and , respectively.Comment: 5 pages,5 figure
Significantly enhanced creep resistance of low volume fraction in-situ TiBw/Ti6Al4V composites by architectured network reinforcements
We present a new class of TiBw/Ti6Al4V composites with a network reinforcement architecture that exhibits a significant creep resistance compared to monolithic Ti6Al4V alloys. Creep tests performed at temperatures between 773 K and 923 K and stress range of 100 MPa-300 MPa indicate both a significant improvement of the composites creep resistance due to the network architecture made by the TiB whiskers (TiBw), and a decrease of the steady-state creep rates by augmenting the local volume fractions of TiBw in the network region. The deformation behavior is driven by a diffusion-controlled dislocation climb process. Moreover, the activation energies of these composites are significantly higher than that of Ti6Al4V alloys, indicating a higher creep resistance. The increase of the activation energy can be attributed to the TiBw architecture that severely impedes the movements of dislocation and grain boundary sliding and provides a tailoring of the stress transfer. These micromechanical mechanisms lead to a remarkable improvement of the creep resistance of these networked TiBw/Ti6Al4V composites featuring the special networked architecture
Study on laser surface quenching structure and hardness of C45 steel
The changes of hardening depth and surface hardness of C45 steel after laser surface quenching were studied. Firstly, the Nd: YAG laser and CO2 laser were used to realize the surface quenching. High power CO2 laser quenching C45 steel, variable process parameters include power, scanning speed and defocusing distance. Then, the Nd:YAG laser was used to quench the samples through orthogonal experiments, and the optimized process parameters were obtained, and the surface hardness was obviously improved. Finally, by comparing the quenching C45 steel of CO2 laser, the influence curve of process parameters on surface hardness was found, and the optimal process parameters were obtained
A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films
Cataloged from PDF version of article.We report a fast-switching negative photoelectrochromic cell composed of a dye-sensitized nanocrystalline TiO2 electrode and Prussian blue counter electrode sandwiching a LiI electrolyte. The cell can be bleached under illumination with shorted TiO2 and Prussian blue electrodes, and re-colored by applying an appropriate external voltage. The photo-bleaching and electric-coloring processes are fast and reversible. A maximum absorbance modulation of 0.44 recorded at 700 nm is obtained between bleached and colored states for the cell when the PB film's thickness is 452 nm. Illuminated under different levels of light intensity or durations of time, the shorted cell shows adjustable optical absorption from 470 to 840 nm. The in-situ transmittance response depicts that the photo-bleaching response is 6.2 s for 70% transmittance change under 100 mW/cm(2) illumination in short circuit configuration, and the re-coloration time is about 600 ms under 2 V bias recorded at 780 nm, with an electrochromic coloration efficiency of 103.4 cm(2)/C. The cell shows a good reversible stability and can be potentially applied in erasable displays. (C) 2011 Elsevier B.V. All rights reserved
Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance
Cataloged from PDF version of article.Plate-like hydrated tungsten trioxide (3WO(3)center dot H(2)O) films were grown on a fluorine doped tin oxide (FTO) coated transparent conductive substrate via an efficient, facile and template-free hydrothermal method. The film exhibited a fast coloration/bleaching response (t(c90%) = 4.3 s and t(b90%) = 1.4 s) and a high coloration efficiency (112.7 cm(2) C(-1)), which were probably due to a large surface area
- …