476 research outputs found
Recent progress in the development of a solar neutron tracking device (SONTRAC)
We report the results of recent calibration data analysis of a prototype scintillating fiber tracking detector system designed to perform imaging, spectroscopy and particle identification on 20 to 250 MeV neutrons and protons. We present the neutron imaging concept and briefly review the detection principle and the prototype description. The prototype detector system records ionization track data on an event-by-event basis allowing event selection criteria to be used in the off-line analysis. Images of acrylic phantoms from the analysis of recent proton beam calibrations are presented as demonstrations of the particle identification, imaging and energy measurement capabilities. The measured position resolution is \u3c 500 micrometers . The measured energy resolution is 14.2 percent at 35 MeV. The detection techniques employed can be applied to measurements in a variety of disciplines including solar and atmospheric physics, radiation therapy and nuclear materials monitoring. These applications are discussed briefly as are alternative detector configurations and future development plans
Huge enhancement of electronmechanical responses in compositionally modulated PZT
Monte Carlo simulations based on a first-principles-derived Hamiltonian are
conducted to study the properties of PZT alloys compositionally modulated along
the [100] pseudocubic direction near the morphotropic phase boundary (MPB). It
is shown that compositional modulation causes the polarization to continuously
rotate away from the modulation direction, resulting in the unusual triclinic
and C-type monoclinic ground states and huge enhancement of electromechanical
responses (the peak of piezoelectric coefficient is as high as 30000 pC/N). The
orientation dependence of dipole-dipole interaction in modulated structure is
revealed as the microscopic mechanism to be responsible for these anomalies.Comment: 5 pages, 4 figure
A scintillating plastic fiber tracking detector for neutron and proton imaging and spectroscopy
We report the results of recent calibration data analysis of a prototype scintillating fiber tracking detector system designed to perform imaging, spectroscopy and particle identification on 20 to 250 MeV neutrons and protons. We present the neutron imaging concept and briefly review the detection principle and the prototype description. The prototype detector system records ionization track data on an event-by-event basis allowing event selection criteria to be used in the off-line analysis. Images of acrylic phantoms from the analysis of recent proton beam calibrations (14 to 65 MeV range) are presented as demonstrations of the particle identification, imaging and energy measurement capabilities. The measured position resolution is c 500 pm. The measured energy resolution (AE/E, FWHM) is 14.2% at 35 MeV. An effective technique for track identification and data compression is presented. The detection techniques employed can be applied to measurements in a variety of disciplines including solar and atmospheric physics, radiation therapy and nuclear materials monitoring. These applications are discussed briefly as are alternative detector configurations and future development plans
Quantum Manifestations of Graphene Edge Stress and Edge Instability: A First-Principles Study
We have performed first-principles calculations of graphene edge stresses,
which display two interesting quantum manifestations absent from the classical
interpretation: the armchair edge stress oscillates with a nanoribbon width,
and the zigzag edge stress is noticeably reduced by spin polarization. Such
quantum stress effects in turn manifest in mechanical edge twisting and warping
instability, showing features not captured by empirical potentials or continuum
theory. Edge adsorption of H and Stone-Wales reconstruction are shown to
provide alternative mechanisms in relieving the edge compression and hence to
stabilize the planar edge structure.Comment: 5figure
Acupuncture May Stimulate Anticancer Immunity via Activation of Natural Killer Cells
This article presents the hypothesis that acupuncture enhances anticancer immune functions by stimulating natural killer (NK) cells. It provides background information on acupuncture, summarizes the current scientific understanding of the mechanisms through which NK cells act to eliminate cancer cells, and reviews evidence that acupuncture is associated with increases in NK cell quantity and function in both animals and humans. The key contribution of this article involves the use of cellular immunology and molecular biological theory to interpret and synthesize evidence from disparate animal and human studies in formulating the ‘acupuncture immuno-enhancement hypothesis': clinicians may use acupuncture to promote the induction and secretion of NK-cell activating cytokines that engage specific NK cell receptors that endogenously enhance anticancer immune function
The importance of inflammation control for the treatment of chronic diabetic wounds
Diabetic chronic wounds cause massive levels of patient suffering and economic problems worldwide. The state of chronic inflammation arises in response to a complex combination of diabetes mellitus-related pathophysiologies. Advanced treatment options are available; however, many wounds still fail to heal, exacerbating morbidity and mortality. This review describes the chronic inflammation pathophysiologies in diabetic ulcers and treatment options that may help address this dysfunction either directly or indirectly. We suggest that treatments to reduce inflammation within these complex wounds may help trigger healing
Evolution of Nuclear Shell Structure due to the Pion Exchange Potential
The evolution of nuclear shell structure is investigated for the first time
within density-dependent relativistic Hartree-Fock theory and the role of
-exchange potential is studied in detail. The energy differences between
the neutron orbits \Lrb{\nu1h_{9/2},\nu 1i_{13/2}} in the N=82 isotones and
between the proton ones \Lrb{\pi1g_{7/2},\pi1h_{11/2}} in the Z=50 isotopes
are extracted as a function of neutron excess . A kink around for
the N=82 isotones is found as an effect resulting from pion correlations. It is
shown that the inclusion of -coupling plays a central role to provide
realistic isospin dependence of the energy differences. In particular, the
tensor part of the -coupling has an important effect on the characteristic
isospin dependence observed in recent experiments.Comment: 4 pages and 4 figure
- …