18,439 research outputs found

    Recent advances in GaAs/Ge solar cells

    Get PDF
    By growing the GaAs cell on a Ge substrate, the advantages of GaAs cells can be retained and the higher mechanical strength of the Ge makes larger, thinner GaAs cells possible. To conform to immediate user requirements, GaAs growth conditions were modified to eliminate the additional PV output at GaAs/Ge interface. To demonstrate acceptable cell manufacturing technology, the major areas in cell manufacture were analyzed and developed, and efficiency combined. Also the cells were successfully assembled on current lightweight arrays. The main areas of effort are discussed

    Ultra-high molecular weight silphenylene-siloxane polymers

    Get PDF
    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C

    A fiber-optic current sensor for aerospace applications

    Get PDF
    A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given

    Fiber-optic sensors for aerospace electrical measurements: An update

    Get PDF
    Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work

    Electrochemical Energy Storage Subsystems Study, Volume 2

    Get PDF
    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values

    How do Behavioral Approaches to Increase Savings Compare? Evidence from Multiple Interventions in the U.S. Army

    Get PDF
    Information provision, choice simplification, social messaging, active-choice frameworks, and automatic enrollment all increase retirement savings. However, gauging the relative efficacy of these approaches is challenging because the supporting evidence derives from diverse populations over a long period. In this study, we leverage experimental and quasi-experimental variation in a constant setting, the U.S. military, to examine the effects of nearly two dozen experiments for four leading policy options (i.e., information emails, action steps, target contribution rates, active choice, and automatic enrollment) designed to increase retirement savings. Consistent with the previous literature, we find sizable effects on participation and cumulative contributions that increase with the intensity of the intervention. We then exploit cost data to complete the first cost-effectiveness analysis in the literature. Our analysis suggests that active choice programs are the most cost-effective method to generate new program participation and contributions for small, medium, and large firms, while automatic enrollment is more cost-effective for very large firms

    Deformed Brueckner-Hartree-Fock calculations

    Get PDF
    The renormalized Brueckner-Hartree-Fock (RBHF) theory for many-body nuclear systems is generalized to permit calculations for intrinsic states having permanent deformation. Both Hartree-Fock and Brueckner self-consistencies are satisfied, and details of the numerical techniques are discussed. The Hamada-Johnston interaction is used in a study of deformations, binding, size, and separation energies for several nuclei. Electromagnetic transition rates, moments, and electron scattering form factors are calculated using nuclear wave functions obtained by angular momentum projection. Comparison is made to experiment as well as to predictions of ordinary and density-dependent Hartree-Fock Theory

    Electrochemical energy storage subsystems study, volume 1

    Get PDF
    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values

    Short-range correlations in carbon-12, oxygen-16, and neon-20: Intrinsic properties

    Get PDF
    The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used
    • …
    corecore