758 research outputs found

    INTERLAYER VORTICES AND EDGE DISLOCATIONS IN HIGH TEMPERATURE SUPERCONDUCTORS

    Full text link
    The interaction of an edge dislocation made of half the superconducting plane with a magnetic interlayer vortex is considered within the framework of the Lawrence-Doniach model with negative as well as positive Josephson interlayer coupling. In the first case the binding energy of the vortex and the dislocation has been calculated by employing a variational procedure. The current distribution around the bound vortex turns out to be asymmetric. In the second case the dislocation carries a spontaneous magnetic half-vortex, whose binding energy with the dislocation turns out to be infinite. The half-vortex energy has been calculated by the same variational procedure. Implications of the possible presence of such half-vortices for the properties of high temperature superconductors are discussed.Comment: 14 Latex pages, 1 figure available upon request

    Doping and Irradiation Controlled Vortex Pinning Behavior in BaFe2(As1-xPx)2 Single Crystals

    Full text link
    We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe2(As1-xPx)2. Proceeding from optimal doped to ovedoped samples, we find a clear transfor- mation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect followed by a reversible magnetization and Bean Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in these materials.Comment: 4 pages, 4 figures,significant change of eraly version, accepted by PRB rapid communication

    Magnetic field of an in-plane vortex outside a layered superconductor

    Full text link
    We present the solution to London's equations for the magnetic fields of a vortex oriented parallel to the plane, and normal to a crystal face, of a layered superconductor. These expressions account for flux spreading at the superconducting surface, which can change the apparent size of the vortex along the planes by as much as 30%. We compare these expressions with experimental results.Comment: 13 pages, 5 figure

    Virus detection and identification using random multiplex (RT)-PCR with 3'-locked random primers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PCR-based detection and identification of viruses assumes a known, relatively stable genome. Unfortunately, high mutation rates may lead to extensive changes in viral nucleic acid sequences making dedicated PCR primer use problematic. Furthermore, in bioterrorism, viral consensus sequences can be genetically modified as a countermeasure to RT-PCR and DNA chip detection. Accordingly, there is a great need for the development of rapid and universal virus detection and identification technologies.</p> <p>Results</p> <p>We report herein that viral genomic DNA or RNA can be separated from host nucleic acids in plasma by filtration and nuclease digestion, and randomly amplified in a single PCR using a mixture of primers designed to be resistant to primer-dimer amplification (5'-VVVVVVVVAA-3', V = A, G or C; 3<sup>8 </sup>or 6561 primers). We have termed this novel PCR method Random Multiplex (RT)-PCR since hundreds of overlapping PCR amplifications occur simultaneously. Using this method, we have successfullydetected and partially sequenced 3 separate viruses in human plasma without using virus-specific reagents (<it>i.e., </it>Adenovirus Type 17, Coxsackievirus A7, and Respiratory Syncytial Virus B). The method is sensitive to ~1000 genome equivalents/ml and may represent the fastest means of detection of unknown viruses.</p> <p>Conclusion</p> <p>These studies suggest that the further development of random multiplex (RT)-PCR may lead to a diagnostic assay that can universally detect viruses in donated blood products as well as in patients suffering with idiopathic disease states of possible viral etiology.</p

    Tissue Barriers to Arbovirus Infection in Mosquitoes

    Get PDF
    Citation: Franz, A. W. E., Kantor, A. M., Passarelli, A. L., & Clem, R. J. (2015). Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses-Basel, 7(7), 3741-3767. doi:10.3390/v7072795Arthropod-borne viruses (arboviruses) circulate in nature between arthropod vectors and vertebrate hosts. Arboviruses often cause devastating diseases in vertebrate hosts, but they typically do not cause significant pathology in their arthropod vectors. Following oral acquisition of a viremic bloodmeal from a vertebrate host, the arbovirus disease cycle requires replication in the cellular environment of the arthropod vector. Once the vector has become systemically and persistently infected, the vector is able to transmit the virus to an uninfected vertebrate host. In order to systemically infect the vector, the virus must cope with innate immune responses and overcome several tissue barriers associated with the midgut and the salivary glands. In this review we describe, in detail, the typical arbovirus infection route in competent mosquito vectors. Based on what is known from the literature, we explain the nature of the tissue barriers that arboviruses are confronted with in a mosquito vector and how arboviruses might surmount these barriers. We also point out controversial findings to highlight particular areas that are not well understood and require further research efforts

    Magnetocaloric Studies of the Peak Effect in Nb

    Full text link
    We report a magnetocaloric study of the peak effect and Bragg glass transition in a Nb single crystal. The thermomagnetic effects due to vortex flow into and out of the sample are measured. The magnetocaloric signature of the peak effect anomaly is identified. It is found that the peak effect disappears in magnetocaloric measurements at fields significantly higher than those reported in previous ac-susceptometry measurements. Investigation of the superconducting to normal transition reveals that the disappearance of the bulk peak effect is related to inhomogeneity broadening of the superconducting transition. The emerging picture also explains the concurrent disappearance of the peak effect and surface superconductivity, which was reported previously in the sample under investigation. Based on our findings we discuss the possibilities of multicriticality associated with the disappearance of the peak effect.Comment: 30 pages, 10 figure
    corecore