50,294 research outputs found

    On the resonances and eigenvalues for a 1D half-crystal with localised impurity

    Full text link
    We consider the Schr\"odinger operator HH on the half-line with a periodic potential pp plus a compactly supported potential qq. For generic pp, its essential spectrum has an infinite sequence of open gaps. We determine the asymptotics of the resonance counting function and show that, for sufficiently high energy, each non-degenerate gap contains exactly one eigenvalue or antibound state, giving asymptotics for their positions. Conversely, for any potential qq and for any sequences (\s_n)_{1}^\iy, \s_n\in \{0,1\}, and (\vk_n)_1^\iy\in \ell^2, \vk_n\ge 0, there exists a potential pp such that \vk_n is the length of the nn-th gap, n∈Nn\in\N, and HH has exactly \s_n eigenvalues and 1-\s_n antibound state in each high-energy gap. Moreover, we show that between any two eigenvalues in a gap, there is an odd number of antibound states, and hence deduce an asymptotic lower bound on the number of antibound states in an adiabatic limit.Comment: 25 page

    Magnetic susceptibility in quasi one-dimensional Ba2V3O9: chain segmentation versus the staggered field effect

    Full text link
    A pronounced Curie-like upturn of the magnetic susceptibility chi(T) of the quasi one-dimensional spin chain compound Ba2V3O9 has been found recently. Frequently this is taken as a signature for a staggered field mechanism due to the presence of g-factor anisotropy and Dzyaloshinskii-Moriya interaction. We calculate this contribution within a realistic structure of vanadium 3d- and oxygen 2p-orbitals and conclude that this mechanism is far too small to explain experimental results. We propose that the Curie term is rather due to a segmentation of spin chains caused by broken magnetic bonds which leads to uncompensated S=1/2 spins of segments with odd numbers of spins. Using a finite-temperature Lanczos method we calculate their effective moment and show that ~1% of broken magnetic bonds is sufficient to reproduce the anomalous low-T behavior of chi(T) in Ba2V3O9.Comment: 5 pages, 5 figures, REVTeX 4, minor corrections to the text, references adde

    Fano interference effect on the transition spectrum of single electron transistors

    Full text link
    We theoretically study the intraband transition spectrum of single electron transistors (SETs) composed of individual self-assembled quantum dots. The polarization of SETs is obtained by using the nonequilibrium Green's function technique and the Anderson model with three energy levels. Owing to nonradiative coupling between two excited states through the continuum of electrodes, the Fano interference effect significantly influences the peak position and intensity of infrared wavelength single-photon spectrum.Comment: 4 pages, 5 figure

    Multiple phase slips phenomena in mesoscopic superconducting rings

    Full text link
    We investigate the behavior of a mesoscopic one-dimensional ring in an external magnetic field by simulating the time dependent Ginzburg-Landau equations with periodic boundary conditions. We analyze the stability and the different possible evolutions for the phase slip phenomena starting from a metastable state. We find a stability condition relating the winding number of the initial solution and the number of flux quanta penetrating the ring. The analysis of multiple phase slips solutions is based on analytical results and simulations. The role of the ratio of two characteristic times u is studied for the case of a multiple phase slips transition. We found out that if u>>1, consecutive multiple phase slips will be more favorable than simultaneous ones. If u>1 is often a necessary condition to reach the ground state. The influence of the Langevin noise on the kinetics of the phase transition is discussed.Comment: 8 pages, 6 figure

    Dynamic coexistence of various configurations: clusters vs.nuclei

    Full text link
    The presence of energy shells in metallic clusters and atomic nuclei leads to a peculiar relation between the number of particles N and the structure, and this leads to a strong correlation between the energy spectrum and N. An analysis of experimental data leads to the conclusion that, in addition to the static Jahn-Teller effect, the dynamic effect leading to the quantum coexistence of different configurations (quantum oscillations) plays an important role. Such suggested coexistence is an essential feature of clusters as well as nuclei, both finite Fermi systems.Comment: 6 pages, 2 figure

    Steady-state nonequilibrium dynamical mean-field theory and the quantum Boltzman

    Full text link
    We derive the formalism for steady state nonequilibrium dynamical mean-field theory in a real-time formalism along the Kadanoff-Baym contour. The resulting equations of motion are first transformed to Wigner coordinates (average and relative time), and then re-expressed in terms of differential operators. Finally, we perform a Fourier transform with respect to the relative time, and take the first-order limit in the electric field to produce the quantum Boltzmann equation for dynamical mean-field theory. We next discuss the structure of the equations and their solutions, describing how these equations reduce to the Drude result in the limit of a constant relaxation time. We also explicitly demonstrate the equivalence between the Kubo and nonequilibrium approaches to linear response. There are a number of interesting modifications of the conventional quantum Boltzmann equation that arise due to the underlying bandstructure of the lattice.Comment: (14 pages, proceedings of the Workshop on Progress in Nonequilibrium Green's Functions III, Kiel Germany

    On details of the thermodynamical derivation of the Ginsburg--Landau equations

    Full text link
    We examine the procedure of thermodynamical derivation of the Ginsburg--Landau equation for current, which is given unclear and contradictory interpretations in existing textbooks. We clarify all steps of this procedure and find as a consequence a limitation on the validity range of the thermodynamic Ginsburg--Landau theory, which does not seem to be explicitely stated up to now: we conclude that the thermodynamic theory is applicable only to a superconducting specimen that is not a part of an external current-carrying loop.Comment: 11 pages. Accepted for publication in 'Superconductor Science and Technology

    Stochastic Simulation of a finite-temperature one-dimensional Bose-Gas: from Bogoliubov to Tonks-Girardeau regime

    Full text link
    We present an ab initio stochastic method for calculating thermal properties of a trapped, 1D Bose-gas covering the whole range from weak to strong interactions. Discretization of the problem results in a Bose-Hubbard-like Hamiltonian, whose imaginary time evolution is made computationally accessible by stochastic factorization of the kinetic energy. To achieve convergence for low enough temperatures such that quantum fluctuations are essential, the stochastic factorization is generalized to blocks, and ideas from density-matrix renormalization are employed. We compare our numerical results for density and first-order correlations with analytic predictions.Comment: 5 pages, 3 figures;text added;accepted in Physical Review

    Effect of organic, low-input and conventional production systems on pesticide and growth regulator residues in wheat, potato and cabbage

    Get PDF
    The Nafferton factorial systems comparison (NFSC) experiments facilitate the investigation of effects of, and interaction between, three production system components - a) rotational position, b) fertility and c) crop protection management - in organic, conventional and low-input crop management systems. This paper presents first results on pesticide and growth regulator residues observed over a period of two years. Residues were only detected for three (Chlormequat, Chlorothalonil and Aldicarb) of the 28 pesticides used in the experiments. As expected, residue levels were affected by the crop protection practices, but significant effects of fertility management practices were also detected. This indicates that the human health risks associated with pesticide residues may increase in low input systems which attempt to reduce the environmental impact of conventional farming systems by switching to organic matter based fertilisation regimes
    • …
    corecore