3 research outputs found

    Impact of neutron radiation on the viability of tumor cells cultured in the presence of boron-10 isotope

    Get PDF
    Objective: to investigate the impact of a neutron beam formed with the accelerator-based epithermal neutron source designed at the G.I. Budker Institute of Nuclear Physics (INP) on the viability of human and animal tumor cells cultured in the presence of boron-10 isotope.Material and methods. Human U251 and T98G glioma cells and Chinese hamster CHO-K1 and V-79 cells were incubated at various concentrations in the culture medium containing 10B-enriched L-boronophenylalanine. The cells were irradiated with a neuron beam using the accelerator-based epithermal neuron source. A clonogenic assay was used to evaluate the viability of the irradiated cells. The absorbed doses obtained from elastic scattering of fast neutrons by substance nuclei and the doses obtained from boron neutron capture were calculated using the NMS code. The absorbed doses of gamma-radiation were measured with a mixed radiation dosimeter.Results. The viability of boron-containing and intact human U251 and T98G cell lines and Chinese hamster CHO-K1 and V-79 cells was analyzed after neutron beam radiation. Irradiation of all four cell lines were cultured in the presence of 10B was shown to reduce their colony-forming capacity compared with the control. Elevated boron levels in the culture medium resulted in a significant decrease in the proportion of survived cells. Radiation had the most pronounced impact on the proliferative capacity of the human U251 glioma cell lines.Conclusion. The cultures of human tumor cells and mammalian cells demonstrated that the neutron beam formed with the accelerator-based epithermal neutron source designed at the INP, was effective in reducing the viability of tumor cells in the presence of 10

    FCRLA is a resident endoplasmic reticulum protein that associates with intracellular Igs, IgM, IgG and IgA

    No full text
    Fc receptor-like A (FCRLA) is an unusual member of the extended Fc receptor family. FCRLA has homology to receptors for the Fc portion of Ig (FCR) and to other FCRL proteins. However, unlike these other family representatives, which are typically transmembrane receptors with extracellular ligand-binding domains, FCRLA has no predicted transmembrane domain or N-linked glycosylation sites and is an intracellular protein. We show by confocal microscopy and biochemical assays that FCRLA is a soluble resident endoplasmic reticulum (ER) protein, but it does not possess the amino acid sequence KDEL as an ER retention motif in its C-terminus. Using a series of deletion mutants, we found that its ER retention is most likely mediated by the amino terminal partial Ig-like domain. We have identified ER-localized Ig as the FCRLA ligand. FCRLA is unique among the large family of Fc receptors, in that it is capable of associating with multiple Ig isotypes, IgM, IgG and IgA. Among hemopoietic cells, FCRLA expression is restricted to the B lineage and is most abundant in germinal center B lymphocytes. The studies reported here demonstrate that FCRLA is more broadly expressed among human B lineage cells than originally reported; it is found at significant levels in resting blood B cells and at varying levels in all B-cell subsets in tonsil

    Peptide–MHC multimer-based monitoring of CD8 T-cells in HIV-1 infection and AIDS vaccine development

    No full text
    corecore