1 research outputs found

    Experimental study of subwavelength grating bimodal waveguides as ultrasensitive interferometric sensors

    Full text link
    [EN] Over the recent years, subwavelength grating (SWG) structures have increasingly attracted attention in the area of evanescent-field photonic sensors. In this Letter, for the first time to the best of our knowledge, we demonstrate experimentally the real-time refractive index (RI) sensing using the SWG bimodal interferometric structures. Two different configurations are considered to compare the effect of the nonlinear phase shift, obtained between the two first transverse electromagnetic propagating modes, in the measured bulk sensitivity. Very high experimental values up to 2270 nm/RIU are reached, which perfectly match the numerical simulations and significantly enhance other existing SWG and spectralbased sensors. By measuring the spectral shift, the obtained experimental sensitivity does not depend on the sensor length. As a result, a highly sensitive and compact singlechannel interferometer is experimentally validated for refractive index sensing, thus opening new paths in the field of optical integrated sensors.European Commission (PHC-634013 PHOCNOSIS project); Spanish Government (TEC2015-63838-C3-1-R-OPTONANOSENS project); Universitat Politecnica de Valencia (grant PAID 01-18).Torrijos-Morán, L.; Griol Barres, A.; García-Rupérez, J. (2019). Experimental study of subwavelength grating bimodal waveguides as ultrasensitive interferometric sensors. Optics Letters. 44(19):4702-4705. https://doi.org/10.1364/OL.44.004702S470247054419Cheben, P., Xu, D.-X., Janz, S., & Densmore, A. (2006). Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Optics Express, 14(11), 4695. doi:10.1364/oe.14.004695Schmid, J. H., Cheben, P., Janz, S., Lapointe, J., Post, E., & Xu, D.-X. (2007). Gradient-index antireflective subwavelength structures for planar waveguide facets. Optics Letters, 32(13), 1794. doi:10.1364/ol.32.001794Bock, P. J., Cheben, P., Schmid, J. H., Lapointe, J., Delâge, A., Janz, S., … Hall, T. J. (2010). Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Optics Express, 18(19), 20251. doi:10.1364/oe.18.020251Halir, R., Bock, P. J., Cheben, P., Ortega‐Moñux, A., Alonso‐Ramos, C., Schmid, J. H., … Janz, S. (2014). Waveguide sub‐wavelength structures: a review of principles and applications. Laser & Photonics Reviews, 9(1), 25-49. doi:10.1002/lpor.201400083Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A., & Smith, D. R. (2018). Subwavelength integrated photonics. Nature, 560(7720), 565-572. doi:10.1038/s41586-018-0421-7Gonzalo Wangüemert-Pérez, J., Cheben, P., Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., … Schmid, J. H. (2014). Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Optics Letters, 39(15), 4442. doi:10.1364/ol.39.004442Donzella, V., Sherwali, A., Flueckiger, J., Grist, S. M., Fard, S. T., & Chrostowski, L. (2015). Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Optics Express, 23(4), 4791. doi:10.1364/oe.23.004791Flueckiger, J., Schmidt, S., Donzella, V., Sherwali, A., Ratner, D. M., Chrostowski, L., & Cheung, K. C. (2016). Sub-wavelength grating for enhanced ring resonator biosensor. Optics Express, 24(14), 15672. doi:10.1364/oe.24.015672Yan, H., Huang, L., Xu, X., Chakravarty, S., Tang, N., Tian, H., & Chen, R. T. (2016). Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides. Optics Express, 24(26), 29724. doi:10.1364/oe.24.029724Huang, L., Yan, H., Xu, X., Chakravarty, S., Tang, N., Tian, H., & Chen, R. T. (2017). Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators. Optics Express, 25(9), 10527. doi:10.1364/oe.25.010527Benedikovic, D., Berciano, M., Alonso-Ramos, C., Le Roux, X., Cassan, E., Marris-Morini, D., & Vivien, L. (2017). Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths. Optics Express, 25(16), 19468. doi:10.1364/oe.25.019468Halir, R., Cheben, P., Luque‐González, J. M., Sarmiento‐Merenguel, J. D., Schmid, J. H., Wangüemert‐Pérez, G., … Molina‐Fernández, Í. (2016). Ultra‐broadband nanophotonic beamsplitter using an anisotropic sub‐wavelength metamaterial. Laser & Photonics Reviews, 10(6), 1039-1046. doi:10.1002/lpor.201600213Luque-González, J. M., Herrero-Bermello, A., Ortega-Moñux, A., Molina-Fernández, Í., Velasco, A. V., Cheben, P., … Halir, R. (2018). Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides. Optics Letters, 43(19), 4691. doi:10.1364/ol.43.004691Jahani, S., Kim, S., Atkinson, J., Wirth, J. C., Kalhor, F., Noman, A. A., … Jacob, Z. (2018). Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration. Nature Communications, 9(1). doi:10.1038/s41467-018-04276-8Torrijos-Morán, L., & García-Rupérez, J. (2019). Single-channel bimodal interferometric sensor using subwavelength structures. Optics Express, 27(6), 8168. doi:10.1364/oe.27.008168Levy, R., & Ruschin, S. (2009). Design of a Single-Channel Modal Interferometer Waveguide Sensor. IEEE Sensors Journal, 9(2), 146-1. doi:10.1109/jsen.2008.2011075Zinoviev, K. E., Gonzalez-Guerrero, A. B., Dominguez, C., & Lechuga, L. M. (2011). Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. Journal of Lightwave Technology, 29(13), 1926-1930. doi:10.1109/jlt.2011.2150734Kozma, P., Kehl, F., Ehrentreich-Förster, E., Stamm, C., & Bier, F. F. (2014). Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosensors and Bioelectronics, 58, 287-307. doi:10.1016/j.bios.2014.02.049Levy, R., & Ruschin, S. (2008). Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation. Optics Express, 16(25), 20516. doi:10.1364/oe.16.020516García-Rupérez, J., Toccafondo, V., Bañuls, M. J., Castelló, J. G., Griol, A., Peransi-Llopis, S., & Maquieira, Á. (2010). Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Optics Express, 18(23), 24276. doi:10.1364/oe.18.024276Zhang, W., Serna, S., Le Roux, X., Vivien, L., & Cassan, E. (2016). Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Optics Letters, 41(3), 532. doi:10.1364/ol.41.000532Di Falco, A., O’Faolain, L., & Krauss, T. F. (2009). Chemical sensing in slotted photonic crystal heterostructure cavities. Applied Physics Letters, 94(6), 063503. doi:10.1063/1.3079671Molina-Fernández, Í., Leuermann, J., Ortega-Moñux, A., Wangüemert-Pérez, J. G., & Halir, R. (2019). Fundamental limit of detection of photonic biosensors with coherent phase read-out. Optics Express, 27(9), 12616. doi:10.1364/oe.27.01261
    corecore