161 research outputs found

    Pinhole calculations of the Josephson effect in 3He-B

    Full text link
    We study theoretically the dc Josephson effect between two volumes of superfluid 3He-B. We first discuss how the calculation of the current-phase relationships is divided into a mesoscopic and a macroscopic problem. We then analyze mass and spin currents and the symmetry of weak links. In quantitative calculations the weak link is assumed to be a pinhole, whose size is small in comparison to the coherence length. We derive a quasiclassical expression for the coupling energy of a pinhole, allowing also for scattering in the hole. Using a selfconsistent order parameter near a wall, we calculate the current-phase relationships in several cases. In the isotextural case, the current-phase relations are plotted assuming a constant spin-orbit texture. In the opposite anisotextural case the texture changes as a function of the phase difference. For that we have to consider the stiffness of the macroscopic texture, and we also calculate some surface interaction parameters. We analyze the experiments by Marchenkov et al. We find that the observed pi states and bistability hardly can be explained with the isotextural pinhole model, but a good quantitative agreement is achieved with the anisotextural model.Comment: 20 pages, 21 figures, revtex

    Terahertz Bloch oscillator with suppressed electric domains: Effect of elastic scattering

    Full text link
    We theoretically consider the amplification of THz radiation in a superlattice Bloch oscillator. The main dilemma in the realization of THz Bloch oscillator is finding operational conditions which allow simultaneously to achieve gain at THz frequencies and to avoid destructive space-charge instabilities. A possible solution to this dilemma is the extended Limited Space-Charge Accumulation scheme of Kroemer (H. Kroemer, cond-mat/0009311). Within the semiclassical miniband transport approach we extend its range of applicability by considering a difference in the relaxation times for electron velocity and electron energy. The kinetics of electrons and fields establishing a stationary signal in the oscillator is also discussed.Comment: Submitted to proceedings of the summer school-conference of AQDJJ programme of ESF, Kiten, Bulgaria, 9-24 June 200

    Tunneling of Cooper pairs across voltage biased asymmetric single-Cooper-pair transistors

    Get PDF
    We analyze tunneling of Cooper pairs across voltage biased asymmetric single-Cooper-pair transistors. Also tunneling of Cooper pairs across two capacitively coupled Cooper-pair boxes is considered, when the capacitive coupling and Cooper pair tunneling are provided by a small Josephson junction between the islands. The theoretical analysis is done at subgap voltages, where the current-voltage characteristics depend strongly on the macroscopic eigenstates of the island(s) and their coupling to the dissipative environment. As the environment we use an impedance which satisfies Re[Z]<<R_Q and a few LC-oscillators in series with Z. The numerically calculated I-V curves are compared with experiments where the quantum states of mesoscopic SQUIDs are probed with inelastic Cooper pair tunneling. The main features of the observed I-V data are reproduced. Especially, we find traces of band structure in the higher excited states of the Cooper-pair boxes as well as traces of multiphoton processes between two Cooper-pair boxes in the regime of large Josephson coupling.Comment: 9 pages, 9 figures, Revtex

    Model of Inhomogeneous Impurity Distribution in Fermi Superfluids

    Full text link
    The standard treatment of impurities in metals assumes a homogeneous distribution of impurities. In this paper we study distributions that are inhomogeneous. We discuss in detail the "isotropic inhomogeneous scattering model" which takes into account the spatially varying scattering on the scale of the superfluid coherence length. On a large scale the model reduces to a homogeneous medium with renormalized parameter values. We apply the model to superfluid 3He, where porous aerogel acts as the impurity. We calculate the transition temperature Tc, the order parameter, and the superfluid density. Both A- and B-like phases are considered. Two different types of behavior are identified for the temperature dependence of the order parameter. We compare the calculations with experiments on 3He in aerogel. We find that most of the differences between experiments and the homogeneous theory can be explained by the inhomogeneous model. All our calculations are based on the quasiclassical theory of Fermi liquids. The parameters of this theory for superfluid 3He in aerogel are discussed.Comment: 14 pages, 9 figures, minor change

    Stark effect and generalized Bloch-Siegert shift in a strongly driven two-level system

    Get PDF
    A superconducting qubit was driven in an ultrastrong fashion by an oscillatory microwave field, which was created by coupling via the nonlinear Josephson energy. The observed Stark shifts of the `atomic' levels are so pronounced that corrections even beyond the lowest-order Bloch-Siegert shift are needed to properly explain the measurements. The quasienergies of the dressed two-level system were probed by resonant absorption via a cavity, and the results are in agreement with a calculation based on the Floquet approach.Comment: 4+ page

    Abrikosov vortex escape from a columnar defect as a topological electronic transition in vortex core

    Full text link
    We study microscopic scenario of vortex escape from a columnar defect under the influence of a transport current. For defect radii smaller than the superconducting coherence length the depinning process is shown to be a consequence of two subsequent topological electronic transitions in a trapped vortex core. The first transition at a critical current jLj_L is associated with the opening of Fermi surface segments corresponding to the creation of a vortex--antivortex pair bound to the defect. The second transition at a certain current jd>jLj_d > j_L is caused by merging of different Fermi surface segments, which accompanies the formation of a freely moving vortex.Comment: 5 pages, 4 figure

    Anisotropic impurities in anisotropic superconductors

    Full text link
    Physical properties of anisotropic superconductors like the critical temperature and others depend sensitively on the electron mean free path. The sensitivity to impurity scattering and the resulting anomalies are considered a characteristic feature of strongly anisotropic pairing. These anomalies are usually analyzed in terms of s-wave impurity scattering which leads to universal pair breaking effects depending on only two scattering parameters, the mean free path and the impurity cross section. We investigate here corrections coming from anisotropies in the scattering cross section, and find not only quantitative but also qualitative deviations from universal s-wave isotropic pairbreaking. The properties we study are the transition temperature, the density of states, quasiparticle bound states at impurities, and pinning of flux lines by impurities.Comment: 19 page

    Spin susceptibility of the superfluid 3^{3}He-B in aerogel

    Full text link
    The temperature dependence of paramagnetic susceptibility of the superfluid ^{3}He-B in aerogel is found. Calculations have been performed for an arbitrary phase shift of s-wave scattering in the framework of BCS weak coupling theory and the simplest model of aerogel as an aggregate of homogeneously distributed ordinary impurities. Both limiting cases of the Born and unitary scattering can be easily obtained from the general result. The existence of gapless superfluidity starting at the critical impurity concentration depending on the value of the scattering phase has been demonstrated. While larger than in the bulk liquid the calculated susceptibility of the B-phase in aerogel proves to be conspicuously smaller than that determined experimentally in the high pressure region.Comment: 10 pages, 4 figures, REVTe

    Elementary vortex pinning potential in a chiral p-wave superconductor

    Full text link
    The elementary vortex pinning potential is studied in a chiral p-wave superconductor with a pairing d=z(k_x + i k_y) on the basis of the quasiclassical theory of superconductivity. An analytical investigation and numerical results are presented to show that the vortex pinning potential is dependent on whether the vorticity and chirality are parallel or antiparallel. Mutual cancellation of the vorticity and chirality around a vortex is physically crucial to the effect of the pinning center inside the vortex core.Comment: 4 pages, 4 figures include
    • …
    corecore