260,734 research outputs found

    A finite-strain hyperviscoplastic model and undrained triaxial tests of peat

    Full text link
    This paper presents a finite-strain hyperviscoplastic constitutive model within a thermodynamically consistent framework for peat which was categorised as a material with both rate-dependent and thermodynamic equilibrium hysteresis based on the data reported in the literature. The model was implemented numerically using implicit time integration and verified against analytical solutions under simplified conditions. Experimental studies on the undrained relaxation and loading-unloading-reloading behaviour of an undisturbed fibrous peat were carried out to define the thermodynamic equilibrium state during deviatoric loading as a prerequisite for further modelling, to fit particularly those model parameters related to solid matrix properties, and to validate the proposed model under undrained conditions. This validation performed by comparison to experimental results showed that the hyperviscoplastic model could simulate undrained triaxial compression tests carried out at five different strain rates with loading/unloading relaxation steps.Comment: 30 pages, 16 figures, 4 tables. This is a pre-peer reviewed version of manuscript submitted to the International Journal of Numerical and Analytical Methods in Geomechanic

    Control of beam propagation in optically written waveguides beyond the paraxial approximation

    Full text link
    Beam propagation beyond the paraxial approximation is studied in an optically written waveguide structure. The waveguide structure that leads to diffractionless light propagation, is imprinted on a medium consisting of a five-level atomic vapor driven by an incoherent pump and two coherent spatially dependent control and plane-wave fields. We first study propagation in a single optically written waveguide, and find that the paraxial approximation does not provide an accurate description of the probe propagation. We then employ coherent control fields such that two parallel and one tilted Gaussian beams produce a branched waveguide structure. The tilted beam allows selective steering of the probe beam into different branches of the waveguide structure. The transmission of the probe beam for a particular branch can be improved by changing the width of the titled Gaussian control beam as well as the intensity of the spatially dependent incoherent pump field.Comment: 10 pages, 9 figure

    Deterministic entanglement of two neutral atoms via Rydberg blockade

    Full text link
    We demonstrate the first deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-NOT gate. Parity oscillation measurements reveal an entanglement fidelity of F=0.58±0.04F=0.58\pm0.04, which is above the entanglement threshold of F=0.5F=0.5, without any correction for atom loss, and F=0.71±0.05F=0.71\pm0.05 after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.Comment: 4 figure

    A unary error correction code for the near-capacity joint source and channel coding of symbol values from an infinite set

    No full text
    A novel Joint Source and Channel Code (JSCC) is proposed, which we refer to as the Unary Error Correction (UEC) code. Unlike existing JSCCs, our UEC facilitates the practical encoding of symbol values that are selected from a set having an infinite cardinality. Conventionally, these symbols are conveyed using Separate Source and Channel Codes (SSCCs), but we demonstrate that the residual redundancy that is retained following source coding results in a capacity loss, which is found to have a value of 1.11 dB in a particular practical scenario. By contrast, the proposed UEC code can eliminate this capacity loss, or reduce it to an infinitesimally small value. Furthermore, the UEC code has only a moderate complexity, facilitating its employment in practical low-complexity applications

    Profiling user activities with minimal traffic traces

    Full text link
    Understanding user behavior is essential to personalize and enrich a user's online experience. While there are significant benefits to be accrued from the pursuit of personalized services based on a fine-grained behavioral analysis, care must be taken to address user privacy concerns. In this paper, we consider the use of web traces with truncated URLs - each URL is trimmed to only contain the web domain - for this purpose. While such truncation removes the fine-grained sensitive information, it also strips the data of many features that are crucial to the profiling of user activity. We show how to overcome the severe handicap of lack of crucial features for the purpose of filtering out the URLs representing a user activity from the noisy network traffic trace (including advertisement, spam, analytics, webscripts) with high accuracy. This activity profiling with truncated URLs enables the network operators to provide personalized services while mitigating privacy concerns by storing and sharing only truncated traffic traces. In order to offset the accuracy loss due to truncation, our statistical methodology leverages specialized features extracted from a group of consecutive URLs that represent a micro user action like web click, chat reply, etc., which we call bursts. These bursts, in turn, are detected by a novel algorithm which is based on our observed characteristics of the inter-arrival time of HTTP records. We present an extensive experimental evaluation on a real dataset of mobile web traces, consisting of more than 130 million records, representing the browsing activities of 10,000 users over a period of 30 days. Our results show that the proposed methodology achieves around 90% accuracy in segregating URLs representing user activities from non-representative URLs
    corecore