17,028 research outputs found

    Designing Dirac points in two-dimensional lattices

    Full text link
    We present a framework to elucidate the existence of accidental contacts of energy bands, particularly those called Dirac points which are the point contacts with linear energy dispersions in their vicinity. A generalized von-Neumann-Wigner theorem we propose here gives the number of constraints on the lattice necessary to have contacts without fine tuning of lattice parameters. By counting this number, one could quest for the candidate of Dirac systems without solving the secular equation. The constraints can be provided by any kinds of symmetry present in the system. The theory also enables the analytical determination of k-point having accidental contact by selectively picking up only the degenerate solution of the secular equation. By using these frameworks, we demonstrate that the Dirac points are feasible in various two-dimensional lattices, e.g. the anisotropic Kagome lattice under inversion symmetry is found to have contacts over the whole lattice parameter space. Spin-dependent cases, such as the spin-density-wave state in LaOFeAs with reflection symmetry, are also dealt with in the present scheme.Comment: 15pages, 9figures (accepted to Phys. Rev. B

    A computerized Langmuir probe system

    Get PDF
    For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA–100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier

    Lamination And Microstructuring Technology for a Bio-Cell Multiwell array

    Full text link
    Microtechnology becomes a versatile tool for biological and biomedical applications. Microwells have been established long but remained non-intelligent up to now. Merging new fabrication techniques and handling concepts with microelectronics enables to realize intelligent microwells suitable for future improved cancer treatment. The described technology depicts the basis for the fabrication of a elecronically enhanced microwell. Thin aluminium sheets are structured by laser micro machining and laminated successively to obtain registration tolerances of the respective layers of 5..10\^Aμ\mum. The microwells lasermachined into the laminate are with 50..80\^Aμ\mum diameter, allowing to hold individual cells within the well. The individual process steps are described and results on the microstructuring are given.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    A Ten-Year Record of Supraglacial Lake Evolution and Rapid Drainage in West Greenland Using an Automated Processing Algorithm for Multispectral Imagery

    Get PDF
    The rapid drainage of supraglacial lakes introduces large pulses of meltwater to the subglacial environment and creates moulins, surface-to-bed conduits for future melt. Introduction of water to the subglacial system has been shown to affect ice flow, and modeling suggests that variability in water supply and delivery to the subsurface play an important role in the development of the subglacial hydrologic system and its ability to enhance or mitigate ice flow. We developed a fully automated method for tracking meltwater and rapid drainages in large (>0.125 km(2)) perennial lakes and applied it to a 10 yr time series of ETM+ and MODIS imagery of an outlet glacier flow band in West Greenland. Results indicate interannual variability in maximum coverage and spatial evolution of total lake area. We identify 238 rapid drainage events, occurring most often at low (< 900 m) and middle (900-1200 m) elevations during periods of net filling or peak lake coverage. We observe a general progression of both lake filling and draining from lower to higher elevations but note that the timing of filling onset, peak coverage, and dissipation are also variable. Lake coverage is sensitive to air temperature, and warm years exhibit greater variability in both coverage evolution and rapid drainage. Mid-elevation drainages in 2011 coincide with large surface velocity increases at nearby GPS sites, though the relationships between ice-shed-scale dynamics and meltwater input are still unclear.National Science Foundation (NSF) NSF-OPP 0908156Earth and Planetary Science

    Classical-Quantum Coexistence: a `Free Will' Test

    Full text link
    Von Neumann's statistical theory of quantum measurement interprets the instantaneous quantum state and derives instantaneous classical variables. In realty, quantum states and classical variables coexist and can influence each other in a time-continuous way. This has been motivating investigations since longtime in quite different fields from quantum cosmology to optics as well as in foundations. Different theories (mean-field, Bohm, decoherence, dynamical collapse, continuous measurement, hybrid dynamics, e.t.c.) emerged for what I call `coexistence of classical continuum with quantum'. I apply to these theories a sort of `free will' test to distinguish `tangible' classical variables useful for causal control from useless ones.Comment: 7pp, based on talk at Conf. on Emergent Quantum Mechanics, Heinz von Foerster Congress (Vienna University, Nov 11-13, 2011

    Deterministic models of quantum fields

    Full text link
    Deterministic dynamical models are discussed which can be described in quantum mechanical terms. -- In particular, a local quantum field theory is presented which is a supersymmetric classical model. The Hilbert space approach of Koopman and von Neumann is used to study the classical evolution of an ensemble of such systems. Its Liouville operator is decomposed into two contributions, with positive and negative spectrum, respectively. The unstable negative part is eliminated by a constraint on physical states, which is invariant under the Hamiltonian flow. Thus, choosing suitable variables, the classical Liouville equation becomes a functional Schroedinger equation of a genuine quantum field theory. -- We briefly mention an U(1) gauge theory with ``varying alpha'' or dilaton coupling where a corresponding quantized theory emerges in the phase space approach. It is energy-parity symmetric and, therefore, a prototype of a model in which the cosmological constant is protected by a symmetry.Comment: 6 pages; synopsis of hep-th/0510267, hep-th/0503069, hep-th/0411176 . Talk at Constrained Dynamics and Quantum Gravity - QG05, Cala Gonone (Sardinia, Italy), September 12-16, 2005. To appear in the proceeding

    Nonclassicality of Thermal Radiation

    Full text link
    It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related to negative values of the Margenau-Hill quasi-probability distribution.Comment: 3 pages, 3 figure

    A wider Europe? The view from Russia, Belarus and Ukraine

    Get PDF
    On the evidence of national surveys conducted between 2000 and 2006, there is a declining sense of European self-identity in the three Slavic post-Soviet republics of Russia, Belarus and Ukraine. Attitudes towards the European Union and the possibility of membership are broadly supportive, but with a substantial proportion who find it difficult to express a view, and substantial proportions are poorly informed in comparison with the general public in EU member or prospective member countries. Those who are better informed are more likely to favour EU membership and vice versa. Generally, socioeconomic characteristics (except for age and region) are relatively poor predictors of support for EU membership as compared with attitudinal variables. But ‘Europeanness’ should not be seen as a given, and much will depend on whether EU member countries emphasize what is common to east and west or establish ‘new dividing lines’ in place of those of the cold war

    Smoothed Particle Hydrodynamics for Relativistic Heavy Ion Collisions

    Full text link
    The method of smoothed particle hydrodynamics (SPH) is developped appropriately for the study of relativistic heavy ion collision processes. In order to describe the flow of a high energy but low baryon number density fluid, the entropy is taken as the SPH base. We formulate the method in terms of the variational principle. Several examples show that the method is very promising for the study of hadronic flow in RHIC physics.Comment: 14 pages, 8figure
    corecore