128 research outputs found

    Environmental impacts of key metals' supply and low-carbon technologies are likely to decrease in the future

    Get PDF
    The environmental benefits of low-carbon technologies, such as photovoltaic modules, have been under debate because their large-scale deployment will require a drastic increase in metal production. This is of concern because higher metal demand may induce ore grade decline and can thereby further intensify the environmental footprint of metal supply. To account for this interlinkage known as the “energy-resource nexus”, energy and metal supply scenarios need to be assessed in conjunction. We investigate the trends of future impacts of metal supplies and low-carbon technologies, considering both metal and electricity supply scenarios. We develop metal supply scenarios for copper, nickel, zinc, and lead, extending previous work. Our scenarios consider developments such as ore grade decline, energy-efficiency improvements, and secondary production shares. We also include two future electricity supply scenarios from the IMAGE model using a recently published methodology. Both scenarios are incorporated into the background database of ecoinvent to realize an integrated modeling approach, that is, future metal supply chains make use of future electricity and vice versa. We find that impacts of the modeled metal supplies and low-carbon technologies may decrease in the future. Key drivers for impact reductions are the electricity transition and increasing secondary production shares. Considering both metal and electricity scenarios has proven valuable because they drive impact reductions in different categories, namely human toxicity (up to −43%) and climate change (up to −63%), respectively. Thus, compensating for lower ore grades and reducing impacts beyond climate change requires both greener electricity and also sustainable metal supply. This article met the requirements for a Gold-Gold JIE data openness badge described at http://jie.click/badges

    Über die Verbreitung von Halophyten an Einem Salzstandort im Mitteleuropäischen Binnenland

    No full text

    Toxische Wirkungen von Antimon auf Repräsentanten trophischer Ebenen von Bodenbiozönosen

    No full text
    Antimon gelangt u.a. durch Emissionen des Straßenverkehrs, der Erzverhüttung und die Nutzung fossiler Brennstoffe in die Umwelt. Lokal begrenzt können auch geogen bedingt hohe Antimongehalte in Böden auftreten. Einige Verbindungen dieses Elementes sind nachgewiesen humantoxisch und kanzerogen. Über sein ökotoxikologisches Potential gegenüber edaphischen Organismen ist nichts bekannt. Das ökotoxische Potential von Antimon wurde anhand von Repräsentanten der trophischen Ebenen terrestrischer Biozönosen (Bodenalgen, höhere Pflanzen, Nematoden, Collembolen) in Bodenkonakttests quantifiziert. Untersucht wurden SbO/K-Tartrat, Sb-III-Sulfid und Sb-V-Sulfid. Toxische Effekte waren sowohl von der applizierten Verbindung, als auch von den Eigenschaften der Böden über die die Exposition erfolgte abhängig. Die ermittelten EC(50)-Werte reichten von 189 bis > 1000 mg Sb/kg. Es wurde eine abnehmende Sensitivität Bodenalgen > Nematoden > Collembolen = höhere Pflanzen gegenüber Antimon festgestellt. Di e durch künstliche Kontamination von Böden hergerufenen Effekte wurden mit Reaktionen der gleichen Organismen auf Exposition in fünf geogen belastete Böden einer Bergbauregion (bis 1317 mg Sb/kg) verglichen
    corecore